
A COMMON IMAGE PROCESSING FRAMEWORK FOR 2D BARCODE READING

E.Ottaviani, A.Pavan " I , M.Bottaz/i, E.Brunclli, F.Casclli, M.Guerre1.o "'

(I) Elsag S.p.A. Italy ~ (2) Datalogic S.p.A. Italy

The present work describes an image processing system
able to locate. segment and decode the most comnion
2D symbol used in applications. The different symbol
are treated exploiting their similarities, in order to
achieve an unified computational structure.

INTRODUCTION

Until today the most important optical machine readable
syinhols have been the ID barcodes. This is a well-
known and estahlishcd technolo_ey hut it shows some
liniitations i n terms of quantity of information stored in
a symbol and error correction capability. Also the
intrinsic rohustncss of [hc har-code symbols is not very
high. because many codes do not have any check
capability and just some of them make use of a check
digit that rcduces but does not eliminate the risk of
misreading.
To overcoiiie these limitations many 2D symbols have
rcccnrly appeared. i n which the optical readable
information is stored using the whole area occupied by
the symbol. They offel- many advantages:

it is possible to encode up to several thousand
characters of machine readable data so they can he
viewed as a fully portable data file containing all
information required for automatic identification;
if only a short information is required it can he
stored in a very small area i n which a ID barcode is
not suitable (e.g. silicon wafer, electronic
components. sinall pharmaceutical items, ... 1;
they have an error detection and correction
structure increasing the reliability and robustness of
the identification.

Many different 2D symbols have been developed, and
they are all competing to gain a dominant relevance in
different applications. The international standardization
process is in a really early phase and today i t is not
possible to foresee which symbols will he successful.
Though each 2D symbol has its own morphological
Structure, different symbols may be grouped in three
main classes:

multi-row (or stacked) codes, in which a set of
linear bar-codes are stacked together in a single,
multi-row symbols. A typical example is the
PDF117 1 1) ;
2D codes with a locating target, in which a special
pattern is used to locate the symbols against a
coniplcx or unknown background. Two typical
examples are the Maxicode [? I and the QR-code
141;

2D codes without a locating target. in which the
locating must exploit the internal structure of the
code itself. A typical example is the Data Matrix.
PI.

The Fig.1 shows code patterns of the four examples
cited above. Many other code types are currently in use,
hut these ones seem the most important for each class.

Fig. I - Most common 2D barcodes - a) Maxicode.
b) Datamatrix, c) QR-code, d) PDF4 17

THE GENERAL READING PROBLEM

The problem addressed in this paper is the real-time
decoding of these 2D symbols. Real tinie really means
different things depending on the system: in the case of
an attended system, in which a human operator is using
the reader, the term real-time means to have a response
time satisfying the feeling of the operator, e.g. a
decoding time of about 500 msec is acceptable.
The process of decoding a 2D barcode is a very
complex task requiring sophisticated image processing
algorithms. The typical steps required to decode a
symhol are:

to acquire a gray levels image containing the
symbol: this can he made by means of 2D CCD
camera or with a linear CCD in the case of moving
targets.
to locate the symbol inside the image: this is often
the slower, time consuming, processing activity
because of the large size of the image and the fact
that the type, number and resolution of the symbols
present in the image and the context of the image

652 Image Processing and its Applications, Conference Publication No. 465 0 IEE 1999

.

itself are typically unknown. Its goal is to find all
the possible region of interest that could contain a
symbol. Location must he robust against: noise,
distortions, interference, scaling and rotation.
to segment the symbols from the region of interest
found in the previous step. (e.g. to extract the
boundaries of the code in order to evaluate the gray
intensity and the co-ordinates of each point of the
mesh composing the symbol).
to decode the symbol, classifying the features
extracted using the syntactic rules of the symbol
and translate the information in an ASCII string.
This step often include an error detection and
correction technique (e.g. Reed Solomon
Algorithms are often used) that requires a
computation time rapidly increasing with the
correction capability.

The difficulties to reach high reading performance can
be summarized as follows:

the variable resolution of the symbols inside the
image, due to the variable distance between the
target label and the reader machine and to the
different printing resolution, symbols may appear in
the image with very different resolution (a
magnification factor of 8 should he considered).
the geometrical distortions under which the symbols
may be found on the image, due to the lack of
orthogonality in the image acquisition phase.

In this paper we propose a quite general image
processing approach suitable to locate, segment an
decode the most common true 2D symbols. That means
we focus our attention on codes like Maxicode and
Datamatrix.
They share some geometrical properties like:

they can be surrounded by a 4-side polygon (and a
sufficiently large quiet zone);
they are characterized by the presence of a stable
pattern composed by simple geometrical primitives
(segments and arcs).

THE IMAGE PROCESSING APPROACH

The image processing approach is composed of four
main steps:

I .
2. Code location
3. Code segmentation
4. Decoding

The first step selects sub-images which are likely to
contain the codes. The second one locate the distinctive
feature of each code (i.e. the "target"), then the third
performs an accurate detection of the code boundary.
Finally, the fourth one allows the computation of the
equivalent ASCII string.

Regions of interest (ROI) detection

_ - c

Fig2 -Typical code image: a) original h) edges

ROI detection

The approach is based on a common image
representation in term of magnitude and phase of the
image gradient. By this representation, we can select a
few region of interest (ROI) in which the gradient
shows some directional characteristics. In order to speed
up the computation, magnitude and phase of the
gradient G are evaluated with 3x3 Sobel masks for G,
and G, and suitable look-up tables for square root and
inverse tangent operators. In order to select a proper
threshold for the magnitude, its RMS value G, is also
computed.
The ROIs are generated by an image tassellation with a
fixed block size L. Such size must be small enough to
ensure a good selection of ROIs and large enough to
have statistical meaning. With typical images in which
code size is from 100 to 400 pixels, a block size of 32
seems adequate.
In each block the points with gradient magnitude greater
than G, are selected and their directional histogram is
evaluated. A strongly modal histogram suggests the
presence of ID barcode or PDF, while the occurrence of
two orthogonal modes suggests the presence of a
Datamatrix of QR-code. Otherwise, the Maxicode is
suggested when histogram is nearly uniform.
The ROIs are then computed by grouping connected
blocks sharing the same directional properties. Then the
groups are labeled as candidate 1D or 2D codes, but
only the true 2D ones are the subject of the following
steps.

653

Code location

Code location is performed by a standard edge detection
and linking approach, in which edge points are grouped
in chains (see Fig.2). In order to get exactly ID chains,
non-maxima suppression and morphological thinning
operators are applied to the thresholded magnitude
gradient image [5]. Then the chains are piecewise fitted
by segments or elliptic arcs. The list of segments and
arcs found in a given region of interest are the base for
the locating process, which selects segments or arcs
configurations according to a given code. Here are the
geometrical rules used to located the different codes:

Maxicode: find a point which is centre of several
concentric arcs;
QR-code: find three points which are intersection of
the axis of several parallel or orthogonal segments;
Datamatrix: find a point which is the intersection of
two nearly orthogonal long segments.

This last stage of the location process must be necessary
dependent on the code to be searched in order to ensure
high performances, exploiting all type of constraints
imposed by both code specifications and imaging
geometry.
Finally, a set of candidates points is produced and each
one is evaluated with a confidence factor taking into
account the number and the length of primitives voting
for each point. It is assumed that each ROI contains
only one 2D code of each type, so only the best
candidates for each type are selected.

Code segmentation

Starting from each candidate point, the segmentation
process try to extract the code boundary. Let us note
that the code boundary is a typical instance of subjective
contour, because it does not correspond to any contour
in the image.
Code segmentation can be carried out in a general way.
The basic idea is to start form a small area (seed) that
must be inside the code and to modify its boundary in
order to include all code points. The shape of the seed
area depends on the code to be found (e.g. it is a circle
for the Maxicode and a triangle for the Datamatrix).
The segmentation task is performed by an alternate
sequence of region growing and convex hull evaluation
(see Fig.3).
Region growing modifies the boundary of the region in
order to include connected pixel with grey level lower
than an adaptive threshold T, evaluated over a small
area centred around that pixel. Adaptive thresholding is
necessary in order to deal with variable lighting
conditions. We adopted a modified version of the
Niblack algorithm [6] , in which the averaged grey level
of a neighbourhood of a given point is used to set a
threshold for that point. This approach works well
because all codes are balanced in terms of blacWwhite
ratio, and the only deviations come from lighting
conditions and code printing quality.

Fig. 3 - Convex expansion: a) intermediate region and
convex hull, b) final region and 4-side polygon

The convex hull computation [7] ensures the
segmentation of the whole code pattern even if it is not
a connected one. This is specially important for codes
composed by sparse dots (e.g. Maxicode). The convex
hull allows the detection of all "black points inside the
boundary which are not connected to the code region.
They are the seeds for the following growing step.
The process stops when no more points inside the
convex boundary can be selected or if the convex hull
does not change after the iteration. Usually two
iterations are sufficient for compact codes (e.g.
Datamatrix), while up to four iterations are needed for
the sparse ones.
Finally the smallest 4-sided polygon surrounding the
segmented code is evaluated. This is a special case of
convex hull evaluation, in which the hull is constrained
to have exactly four sides. The output consists in a list
of four points which are the vertices of a general
polygon surrounding the code.

Decoding

The area inside the polygon is then meshed, resampled
and binarized in order to compute the bit pattern of the
code. The mesh is evaluated by exploiting code
characteristics and keeping in account that codes may be
rotated, scaled and distorted with respect to a 'given
prototype. Affine group transformations are used in
order to define the allowed deformations.
Finally the nodes of the mesh are evaluated in order to
define their logical value. The resulting bit pattern is
checked in order to find the equivalent ASCII string,
exploiting the error correcting mechanisms embedded
into the code specifications.

654

RESULTS AND COMMENTS

The process ensures real-time decoding of 2D symbols
even with bad illumination conditions and with strong
perspective deformations. Tests on real images show
that codes are still readable even at 45 degree from the
vertical axis. Image resolution is a key issue. At least 3
pixel for the smallest element of the code (the
"modulus") are needed in order to get an answer.
Software implementation does not require any special
device but can be done on low cost CPUs (e.g. Pentium
233 MHz). Processing time on typical VGA images
(640x480 pixels) ranges from 200 to 400 msec,
depending on the size and the type of the code. Let us
note that such result is already compatible with the
typical user requirement for a handheld device. In fact,
an automatic reading device must have a response time
comparable with the reaction time of a human operator.
At least one half of the processing time is due to image
pre-processing (gradient computation). Dealing with
larger images, a multiresolution approach may be
adopted, in order to find ROIs at a lower resolution and
to process them at a higher one.
The approach is suitable to be extended to many more
2D symbols sharing similar geometrical properties. That
means it is possible to decode new symbols only adding
proper functions for spatial reasoning and decoding.

CONCLUSIONS

The paper presents a general image processing
architecture in order to locate and decode 2D symbols
like Maxicode, QR-code and Datamatrix. The approach
ensures high reading performances even under bad
lighting conditions and strong perspective deformations.
Results show the process is already suitable of real time
implementation.
The work has been supported by the EEC funded
project BBC (Bidimensional Bar Codes), developed
under the ESPRIT Technology Transfer Program and
coordinated by the Technological Transfer Node
NOTSOMAD. Achieved results have been jointly
patented by Elsag and Datalogic.

REFERENCES

I . AIM, 1994,"Uniform Symbology Specification:
PDF4 17"

2. AIM,I997,"International Symbology Specification:
Data Matrix"

3. AIM,1996,"International Symbology Specification:
Maxicode"

4. AIM,1997,"International Symbology Specification:
QR-Code"

5. R.Jain, and R.Kasturi, 1995, "Machine Vision",
Mc-Graw Hill, New York

6. JSauvola et al. , 1997, "Adaptive document
binarization", Proc. IEEE, pp.147-152

7. F.Preparata, and M.Shamos, 1993, "Computational
Geometry", Springer Verlag, New York

655

