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Abstract

We demonstrate real-time face tracking and pose estimation in an
unconstrained office environment with an active foveated camera. Using
vision routines previously implemented for an interactive environment,
we determine the spatial location of a user’s head and guide an active
camera to obtain foveated images of the face. Faces are analyzed using a
set of eigenspaces indexed over both pose and world location. Closed loop
feedback from the estimated facial location is used to guide the camera
when a face is present in the foveated view. Our system can detect the
head pose of an unconstrained user in real-time as he or she moves about
an open room.

1 Introduction

Faces are an important cue for systems which interact with people. To be useful,
a system should know whether a user is paying attention, in particular where the
user is looking during an interactive dialog. Our goal in this paper is to develop
a user interface which can track the face of an unconstrained user and estimate
his/her pose, as he or she walks about a room. To be successful, this analysis
must occur in real-time, which places considerable constraints on the type of
face processing that can be performed. Our approach is to combine active vision
methods with eigenspace-based estimation of facial pose. We apply our method
in an interactive domain where the user can walk freely about in a 15" by 15’
space, facing a large video projection screen.

Our method uses person tracking routines run on a wide angle camera view
to first locate the person in the room, and then eigenspace-based face analysis
on a narrow angle camera view for accurate face tracking and pose estima-
tion. Camera control is performed open-loop using the general person tracking
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Figure 1: Overview of system for face/body tracking and pose estimation,
Objects are rendered on Video Wall and react to facial pose of user. Static,
wide-field-of-view, camera tracks user’s head, and drives gaze control of active,
narrow-field-of-view camera. Eigenspace-based pose estimation is run on face
images from active camera, to provide pose estimates for objects/agents to react
to, and to provide closed loop face tracking feedback for active camera.

routines, and closed-loop, using feedback from eigenspace-based face and pose
models (Figure 1.)

First we will review person tracking in our interactive room environment,
as well as our methods for eigenspace-based pose estimation. We will then
present our real-time implementation of the estimation and tracking methods,
and discuss our how location-specific eigenspace learning can overcome signifi-
cant variation in imaging conditions. Finally we will show results demonstrating
the accuracy of pose estimation in our real-time system.

2 Person Tracking

Previously, we have implemented vision routines to track a user in an office
setting as part of our ALIVE system, an Artificial Life Interactive Video Envi-
ronment [5]. This system can track people and identify head/hand locations as
they walk about a room, and provide foveation cues to guide an active camera
to foveate head or hands. These visual routines assume only that the user is fac-
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Figure 2: Person tracking in a system for vision-based interaction with a virtual
environment. (a,b) A user sees him/herself in a “magic mirror”, composited in a
virtual environment. Computer vision routines analyze the image of the person
to allow him /her to effect the virtual world through direct manipulation and/or
gestural commands. (c¢) Results of feature tracking routine; head, hands, and
feet are marked with color-coded balls.

ing the screen in front of a known background, and can operate on coarse-scale
images.

The ALIVE system was originally designed to allow a user to interact with
virtual creatures, through the use of a “magic-mirror” metaphor in which a
user sees him/herself presented in a video display along with graphical objects
and virtual creatures (Figure 2). A wide field-of-view video camera acquires an
image of the user, which is then combined with computer graphics imagery and
projected on a large screen in front of the user.

Vision routines acquire the image of the user, compute figure/ground seg-
mentation, and find the location of head, hands, and other salient body features.
We use only a single, calibrated, wide field-of-view camera to determine the 3-D
position of these features. We do assume a fixed color background, and that
the person is facing the camera/screen. For details of our method, see [13]; here
we summarize the three main steps of the algorithm which are relevant to face
tracking:

1. A multi-class color classification test is used to compute figure/ground
segmentation, using a single Gaussian model of background pixel color
and an n-class adaptive model of foreground (person) colors.

2. Region growing is performed, starting at the centroid location of the per-
son in the previous frame, to find a single connected region. If this fails
to grow a sufficiently large region, random seed points are selected until
a stable region is found. The contour of the extracted region is found by
chain-coding the connected foreground region.

3. Using the known camera geometery, the lowest point of the contour in the
image 1s projected onto the known ground plane, to determine the location



in depth of the person. The contour is projected from 2-D screen coor-
dinates into 3-D world coordinates, based on the depth value computed
in the previous step. (In the ALIVE system this contour is then used to
perform video compositing and depth clipping to combine the user’s video
image with computer graphics imagery.) The head is defined to be the
highest contour point in a neighborhood directly above the centroid of the
foreground region.

This monocular, wide field-of-view person tracking method can locate the
head of a user in the scene, and return both the 2-D image coordinates of the
head, and the inferred 3-D world coordinates based on the camera geometery
and the assumption that the user stands erect on the ground plane. We use the
estimated head location to obtain a high resolution image of the face, using a
second, active camera. Since our active camera is mounted some distance from
the wide angle camerea, (approx 6 ft.) we use the estimated 3-D head location
and derive the active camera gaze angle with simple trigonometry using the
know active camera base location. !

In the results shown in this paper, the wide angle camera was placed on top
of a 8 ft. video projector screen and the active camera placed at the base of the
screen; the 3-D method was used to determine gaze angle. We obtained reliable
tracking using this method; figure 3 shows pairs of output from the wide and
narrow cameras in our active-vision ALIVE system as the user walks across the
room and has his head tracked by the narrow field-of-view camera. The narrow
field-of-view camera is able to provide a high-resolution image of the users face
suitable for pose estimation using the eigenspace method, as presented below.

3 Pose Estimation with Eigenspaces

There are essentially two ways of approaching the problem of pose estimation
in an eigenspace framework. Given N individuals under M different poses, one
can do recognition and pose estimation in a universal eigenspace computed from
the combination of N M images. In this way a single “parametric eigenspace”
will encode both identity as well as pose. Such an approach, for example, has
recently been used by Murase and Nayar [8] for general 3D object recognition
and pose estimation.

Pentland et al. [9] have suggested a view-based approach to face recogni-
tion under varying pose. In this formulation a separate set of “eigenfaces” is
computed for each possible object pose. Object pose is identified by computing
the eigenspace projection of the input image onto each eigenspace and selecting
the one with the lowest residual error (or “distance-from-feature-space” (DFFS)

1If the optical center of the active camera can be mounted close to the optical center of
the fixed camera, then one could simply scale the 2-D image location of the head in the fixed
view to compute a pan and tilt angle for the active camera,



Figure 3: Tmages acquired from wide (a) and narrow (b) field of view cameras
as user moved across room and narrow camera tracks head.



Figure 4: Multiple-Pose Eigenfaces. Mean templates (E0) are shown on the left
along with the first 4 eigenvectors (E1 to E4).

metric [9]). This scheme can be viewed as a multiple-observer system where sep-
arate eigenspaces are simultaneously “competing” in describing the input image
(see [12] and [4] for related work). Examples of eigenfaces for multiple poses (at
the same spatial location) are shown in Figure 4.

The key difference between the view-based and parametric representations
can be understood by considering the geometry of facespace. In the high-
dimensional vector space of an input image, multiple-orientation training images
are represented by a set of M distinct regions, each defined by the scatter of N
individuals. Multiple views of a face form non-convex (yet connected) regions
in image space [1]. Therefore the resulting ensemble is a highly complex and
non-separable manifold.

The difference between the two approaches is illustrated in Figure 5. The
parametric eigenspace attempts to describe this ensemble by a projection onto a
single low-dimensional linear subspace (corresponding to the first n eigenvectors
of the NM training images). In contrast, the view-based approach corresponds
to M independent subspaces, each describing a particular region of the facespace
(corresponding to a particular view of a face). The relevant analogy here is that
of modeling a complex distribution by a single cluster model or by the union
of several component clusters. The latter (view-based) representation can yield
a more accurate representation of the underlying geometry depending on the
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Figure 5: A schematic representation of parameteric vs. view-based eigenspaces.

degree of manifold complexity of the data.

3.1 MAP estimation with Eigenspaces

Recently Moghaddam & Pentland [7] have shown that the DFFS measure can be
combined with a corresponding “distance-in-feature-space” (DIFS) to yield an
estimate of the probability density function for a class of images. This likelihood
estimate can be made optimal (with respect to information-theoretic divergence)
and can be computed solely from the low-dimensional subspace projection coef-
ficients, thus yielding a computationally efficient estimator for high-dimensional
probability density functions.

Specifically, given a set of training images {xt}i\;ﬂ, from an object class Q
(in this case a collection of user views from a single location and pose), we
wish to estimate the likelihood function for this data — i.e., P(x|€). We note
that from a probabilistic perspective, the class-conditional density P(x|) is
the most important data representation to be learned. This density is the crit-
ical component in detection, recognition, prediction, interpolation and general
inference. In our case, having learned these densities for several pose classes
{Q4,Q9, -+, Q,}, we can formulate either a maximum-likelihood estimate

OME(x) = argmax{ P(x|Q)} ()



or a maximum & posterior: estimate

OMAP(x) = Q) st P(Qj]x) > P(Qi]x) Vi # j (2)
using Bayes rule
Plife) = P ®
Z P(x|Q;)P(€;)

We now review how an arbitrary density estimate P(x|;) can be computed
using the eigenspace technique of [7] specialized to the case of a Gaussian dis-
tribution.

3.2 Principal Component Imagery

Given a set of m-by-n images {It}i\gl, we can form a training set of vectors
{x'}, where x € RN=""_ by lexicographic ordering of the pixel elements of
each image I'. The basis functions in a Karhunen-Loeve Transform (KLT) [6]
are obtained by solving the eigenvalue problem

A = dT%o (4)

where X is the covariance matrix of the data, ® is the eigenvector matrix of X
and A is the corresponding diagonal matrix of eigenvalues. In PCA, a partial
KLT is performed to identify the largest-eigenvalue eigenvectors and obtain a
principal component feature vector y = ®1; %, where X = x — X is the mean-
normalized image vector and @3, is a submatrix of ® containing the principal
eigenvectors. PCA can be seen as a linear transformationy = 7(x) : RY — RM
which extracts a lower-dimensional subspace of the KL basis corresponding to
the maximal eigenvalues. This corresponds to an orthogonal decomposition of
the vector space RY into two mutually exclusive and complementary subspaces:
the principal subspace (or feature space) F' = {®;}M, containing the principal
components and its orthogonal complement F = {@i}f\;M_H, as illustrated in
Figure 6.
In a partial KL expansion, the residual reconstruction error is defined as

)= D0 w = IKP - Y ()

i=M+1

and can be easily computed from the first M principal components and the
Lo-norm of the mean-normalized image x. Consequently the Ly norm of every
element x € RY can be decomposed in terms of its projections in these two
subspaces. We refer to the component in the orthogonal subspace F as the
“distance-from-feature-space” (DFFS) which is a simple Euclidean distance and
is equivalent to the residual error €?(x) in Eq.(5). The component of x which lies
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Figure 6: The principal subspace F' and its orthogonal complement F for a
Gaussian density.

in the feature space F is referred to as the “distance-in-feature-space” (DIFS)
but is generally not a distance-based norm, but can be interpreted in terms of
the probability distribution of y in F.

As shown in Appendix A, an estimator for P(X|Q) is given by:

M y? 2(X
eo(-30 E) ] [or(-22

PO = G Tt | |G (6)

= Pr(x|Q) Pp(x|Q)

In general, brute-force computation of pose likelihoods in real-time is com-
putationally infeasible. Fortunately, most of the information computed by a
brute force evaluation of DFFS is of little importance—what is of interest is the
location of the minima of the distance function. Following [2], we use the zero-th
order eigenvectors, EQ, to perform spatial localization within the foveated cam-
era view. We compute a coarse to fine search using the EO template for each
pose, and find the pose and offset which has maximal normalized correlation
response. We then fully evaluate the higher order eigenvectors at this location
for each pose, and compute the pose class likelihood as given above.



4 Location-dependent Eigenspace Learning

Face images obtained from our active camera can be used to compute pose
estimates, using the eigenspaces technique described above. However, with a
user moving in 3-space, we have to deal with considerable variations in scale
(size of head), and illumination changes (such as shadows) that are not well
modeled by a single eigenspace. These variations have large-scale geometric
effects, just as do changes in pose. Our approach is to define multiple sets
of eigenspaces, indexed over both pose and location in the world. A set of
eigenspaces 1s constructed corresponding to each facial pose and world location.
Each pose class is defined by a set of location specific pose class statistics:

Q;, = {Qi’]},l €L, (7)
where the set of world locations is given by

L = {z0,21,...21}, (8)

where z is a 3-D coordinate vector. To compute a composite pose class likeli-
hood, we consider the estimation problem to be a case of estimation given spare
observations. We approximate the probability at locations where no training
data is available. Given an observed face image xz at a world location z*, we
compute an approximate probability via interpolation among the K nearest lo-
cations which have actual proability estimates. Using a linear interpolant, we
have

K
(x,271Q) & > w(k)P (x| (1), (9)
k:

where n(k) is a function that returns the k-th nearest location to z* in £, and
w(k) weights the distance of each location

||2* = n(k)[|”
Sicollzr = n()I2

This offers much increased accuracy over computing a single set of pose eigenspaces
for use over the entire room environment. Figure 7 shows sets of eigenspaces
for three different poses collected at three different world locations.

Note that we need not evaluate the eigenspaces for each possible world loca-
tion, since the person tracking routines provide an estimate of the users position
that is sufficient to restrict the set of eigenspaces used by the system. The run-
time computational burden of having L different world locations each with a
separate set of pose templates is k£ times the cost of a single location, since we
need not evaluate the eigenspace likelihoods that for locations that are not in
the nearest neighbor set [11].

w(k) = (10)

10
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Figure 7: Multiple-Pose Eigenspaces for 3 different spatial locations
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Figure 8: Tracking results: plot of pan angle for (a) stationary user, and (b)
moving user who walked across room while oscillating head. Dashed line shows
pan position under open-loop control; solid line shows pan position under closed-
loop control.

5 Performance

We evaluated the tracking and pose estimation performance of our system.
Eigenspaces were trained for each of 3 poses at 10 different world locations,
using a sample set size of 10 images at each location. The locations were set
to be in two concentric semi-circles on the floor of the workspace, at camera
pan angles of -32, -16, 0, 16, and 32 degrees, and ranges of 80 and 120 inches.
The active camera was fitted with a lens of 50mm focal length (c-mount type).
Figure 7 shows three of the eigenspaces that were trained.

In these experiements we have used multiple views of a single user to con-
struct eigenspaces. In our data set, each eigenspace describes variations in ap-
pearance due to expressions, slight mis-alignments and with and without glasses.
(The method, however, can easily be extended to multiple users.)

We then evaluated the performance of the system against new images of
the same user both at the locations where the eigenspaces were trained, and at
randomly selected floor locations. We used the spatial localization method de-
scribed above, evaluating eigenspaces at the location at which the corresponding
EO template had maximal normalized correlation response.

First, we note that eigenspace face analysis can improve head tracking accu-
racy using closed-loop feedback to guide the active camera. Figure 8 compares
the camera position in the case of open loop control, when the gaze angle is
determined only by the wide-angle person finder, and closed loop control, when
the gaze angle is corrected by the offset of the face in the current foveated image.
During normal system operation, we set a threshold on DFFS value to deter-
mine the transition between open and closed loop state, so that the closed loop

12



(a) trained (actual) (b) untrained (actual)
locations Q4 Qs Q3 locations Q4 Qs Q3
(observed) (observed)
971 10 0 0 Q1 14 2 2
Q, 0 10 3 Qs 1 12 3
Q3 0 0 7 Q3 0 1 10
(c) all (actual)
trials Ql QQ Qg
(observed)
Q4 24 2 2
Qs 1 22 6
Q3 0 1 17

Table 1: Results of pose classification experiment determing the pose of a user
facing a display screen as the user stood at various locations in an interactive
room. The task was to classify where on the video screen the user was look-
ing; left (1), center (Q3), or right (23). A multiple location/multiple pose
eigenspace technique was used on the output of an active camera tracking the
users head, as described in the text. The confusion matrix was computed for
(a) trials at trained locations, (b) trials at non-trained locations, (c) all trails.
An overall success rate of 84% was achieved.

signal does not contribute when there is no face in the active camera field of
view. During these runs, the user was approximately twelve feet from the cam-
era, and walked freely in approximately a ten by ten foot area. Total time for
computing pose estimates and active tracking, including closed loop feedback,
was less than 1/5 second.

Second, we show the pose classification rate for our system. In a trial with
n = 25 observations, where 10 of these observations were at the training loca-
tions and the remainder at locations chosen with a uniform probability across
the workspace, we computed the pose class confusion matrix. Three pose classes
were used, one for looking to the left of the screen (€21), one for looking at the
center of the screen (23), and one for looking at the right of the screen (Q3).
Recall that the screen was situated in front of the 15’x15’ space, and was itself
8’x10°. Results of our system on this experiment are shown in Table 1. We ob-
tained an overall success rate of 84% (63/75) for all trails, which breaks down to
a success rate of 90% (27/30) on the trails at the locations were the eigenspaces
were trained, and 80% (36/45) on the trails at randomly selected locations.

13



6 Conclusion

In conlusion, we have shown that by intergrating person tracking routines, an
active camera, and multiple eigenspace pose models, we can accurately estimate
the direction of gaze of a user interacting with a large screen video display. In
the experiment described here, the user was on average 15’ from the cameras and
the display, and yet our system could discriminate pose classes which amounted
to 10-15 degrees of gaze angle. Our system runs in real time, and is used in
applications for interacting with virtual environments or agents that can respond
appropriately to the users gaze, such as showing more information about an
object of interest.

Appendix A. Gaussian F-Space Densities

We now consider an optimal approach for estimating high-dimensional Gaus-
sian densities. We assume that we have (robustly) estimated the mean X and
covariance ¥ of the distribution from the given training set {x‘}. Under this
assumption, the likelihood of a input pattern x is given by

exp [—%(x -x)Ie1(x— )_c)]

P(Xlg) = (27‘_)1\(/2 |E|1/2 (11)

The sufficient statistic for characterizing this likelihood is the Mahalanobis dis-
tance

dix) = x'27'x (12)

where X = x — X. Using the eigenvectors and eigenvalues of 3 we can rewrite
¥~ in the diagonalized form

dx) = Ty 'z

x7 [®A10T] % (13)
= y'ATly

where y = ®”x are the new variables obtained by the change of coordinates in
a KLT. Because of the diagonalized form, the Mahalanobis distance can also be
expressed in terms of the sum

2
)

<

(14)

>

dx) = 3

)
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We now seek to estimate d(x) using only the M principal projections. Therefore,
we formulate an estimator for d(x) as follows

i M y? 1 N
d(x) = EA_ZZ + ;l E yf]
i=1 i=M+41 (15)
w y? I,
= L5t

1

-
I

where the term in the brackets is the DFFS €?(x), which as we have seen can be
computed using the first M principal components. We can therefore write the

form of the likelihood estimate based on d(x) as the product of two marginal
and independent Gaussian densities

M y? 2(X
ep(-30 E) ] [oo(-22

(QW)M/2 HM )\1/2 . (27Tp)(N_M)/2 (16)

=1 ?

P(x/9)

= Pp(x|Q) Pp(x|Q)

where Pp(x|Q) is the true marginal density in F-space and Pg(x|Q) is the
estimated marginal density in the orthogonal complement F-space. The optimal
value of p can now be determined by minimizing a suitable cost function J(p).
From an information-theoretic point of view, this cost function should be the
Kullback-Leibler divergence [3] between the true density P(x|€2) and its estimate
P(x[Q)

P(x[Q)
P(x|Q)
Using the diagonalized forms of the Mahalanobis distance d(x) and its estimate
d(x) and the fact that E[y?] = ); , it can be easily shown that

I(p) = & i [Ai 1+lgp] (18)
P = 5 = —1+log+
2. G Le Ai

J(p) = E|lo (17)

The optimal weight p* can be then found by minimizing this cost function with
respect to p. Solving the equation % = 0 yields

1 N
= A 19
p N > (19)
i=M41
which is simply the arithmetic average of the eigenvalues in the orthogonal sub-
space F. In addition to its optimality, p* also results in an unbiased estimate
of the Mahalanobis distance — i.e, E[d(x; p*)] = E[d(x)]. What this derivation
shows is that once we select the M-dimensional principal subspace F (as indi-
cated, for example, by PCA), the optimal density estimate P(x|€2) has the form
of Eq.(16) with p given by Eq.(19).
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