
Martin Luther University Halle-Wittenberg

Institute of Computer Science

Pattern Recognition and Bioinformatics

User and Programmer Guide

Advanced Library for
Integrated Development of
Data Analysis Applications

li
daA

– Alida –

Advanced Library for Integrated Development

of Data Analysis Applications

Version 2.1, February 2013

written by

The Alida Development Team

Birgit Möller Stefan Posch

Licensing information.

This manual is part of Alida, an

Advanced Library for Integrated Development of Data Analysis Applications.

Copyright c© 2010–2013

This program is free software: you can redistribute it and/or modify it under the terms of the

GNU General Public License version 31 as published by the Free Software Foundation2, either

version 3 of the License, or (at your option) any later version.

You should have received a copy of the GNU General Public License along with this manual.

If not, see http://www.gnu.org/licenses/.

Fore more information on Alida visit http://www.informatik.uni-halle.de/alida/.

Alida is a project at the Martin Luther University Halle-Wittenberg.

Institution:

Institute of Computer Science

Faculty of Natural Sciences III

Martin Luther University Halle-Wittenberg

Von-Seckendorff-Platz 1, 06120 Halle, Germany

Contact: alida@informatik.uni-halle.de

Webpage: www.informatik.uni-halle.de/alida

1http://www.gnu.org/licenses/gpl-3.0.html
2http://www.fsf.org/

http://www.gnu.org/licenses/gpl-3.0.html
http://www.fsf.org/
http://www.gnu.org/licenses/
http://www.informatik.uni-halle.de/alida/

CONTENTS i

Contents

1 Introduction 1

2 The user’s view 5

2.1 Quick starter . 5

2.2 Alida operators . 6

2.3 Graphical user interface . 7

2.4 Graphical workflow editor: Grappa . 12

2.4.1 Operator Node Selection Menu . 13

2.4.2 Workbench Area . 13

2.4.3 Menubar . 15

2.5 Commandline user interface . 16

2.6 History . 19

2.7 Configuring Alida . 20

3 The programmer’s view 23

3.1 Alida operators . 23

3.1.1 Using operators . 23

3.1.2 Implementing operators: Basics . 24

3.1.3 Implementing operators: Advanced techniques 27

3.1.4 Implementing operators: Datatypes of parameters 29

3.2 Data I/O Provider . 30

3.2.1 Implementing a Swing Data I/O Provider 31

3.2.2 Commandline Provider . 33

3.3 The processing history . 35

3.3.1 Basics of the history concept . 35

3.3.2 Accessing history data . 36

3.3.3 Different modes of processing graph construction 37

3.3.4 Software version handling . 38

3.4 Configuring Alida . 39

i

CONTENTS i

A Graph-Visualization: Chipory 41

A.1 Installation and invocation of Chipory . 41

A.2 Using Chipory . 41

i

1

1 Introduction

Alida, which is the acronym for Advanced Library for Integrated Development of Data Analysis

Applications, is the name of our integrated concept to ease the development and application of

data analysis algorithms. For use in practice the concept is implemented in terms of a library.

This Alida library on the one hand subsumes the fully automatic documentation of data analysis

processes performed using functionality from the library, and on the other hand it allows for

an automatic generation of generic user interfaces for implemented algorithms. The underlying

core of the Alida concept is given by an interpretation of data analysis processes as a sequence

of data manipulations solely performed by functional units, called operators in Alida. Given a

generic definition for all operators implemented in Alida, they can be handled, i.e. configured

and executed, in a standardized manner. This results in a wide range of usefull features for

programmers as well as users.

The operator concept with the operators as the central places of data manipulation and a

unified invocation procedure allows to monitor all manipulations during a data analysis process.

Additionally all objects ever manipulated are registered within the system and can be linked

to their manipulating operators. Automatic documention of analysis procedures subsumes all

input and output objects involved in the execution of operators, all manipulations performed

with all their relevant parameters, the flow of data, and also software versions as used. All

this information is summarized in the processing graph which is implicitly defined by any data

analysis process. As manipulative actions can either work sequentially or in parallel on data

items, the processing graph is given by an acyclic directed graph. Its nodes are associated with

the different operations applied to the data and the edges in between represent the operators’

ordering and the overall flow of data and control. This representation is shown in Fig. 1 for an

example graph. As Alida allows to collect all relevant data for extracting processing graphs due

to its operator concept and the standardized invocation procedure for operators, it allows to make

the processing graph explicit without efforts to the programmer or user. In particular, for each

output object of any analysis process the processing graph can subsequently be made explicit

in terms of an XML representation. This allows for convenient visualization, reconstruction and

verification of results at a later point in time, and also for long-term archiving, e.g., in databases.

While documenting analysis processes is helpful for verifying or reconstructing results at

later points in time, i.e. for long-term consistency and preservation of data analysis outcomes,

another important aspect of algorithm development is the accessibility of algorithms and tools

for programmers and users. Usually neither developers of algorithms nor users are willing or

able to spend much time on the implementation of user interfaces. Alida’s operator concept and

the standardized configuration and execution procedure also offers a solution to this problem

by providing the for automatic generation of user interfaces for operators. More specifically,

Alida provides an automatically generated graphical user interface which allows to configure

and execute all operators implemented in the Alida framework, as well as to visually inspect the

1

2 1 INTRODUCTION

Figure 1: Example processing graph representing the history of operations for producing the data object

shown as yellow ellipse. Each operator invocation is respresented by a blue or, if the operator is temporarily

collapsed, to a violet rectangle. Light and dark green ellipses are input and output ports of operators,

gray triangles represent newly generated data objects.

results of processing. In addition Alida provides a commandline interface which likewise allows

to execute all operators. This is useful, e.g., for parameter tuning or batch processing faciliated

by scripts.

The framework for documentation is independent of programming languages. Alida cur-

rently features an implementation in Java. The Java library implementation of Alida is shipped

with a commandline tool for running operators from commandline, and with a graphical user

interface based on Java Swing which supports comfortable parameter editing and result data

inspection in a graphical framework, well-suited also for non-expert users. In additon the graph-

ical editor Grappa is included which currently supports to compose flat workflows of operators

and their partial or complete execution (see Sec. 2.4). Configuration and inspection of result are

identical to the graphical user interface. To inspect the automatically generated documentation

the graph visualization tool Chipory is available (see Appendix A).

In general the Alida concept enforces minimal restrictions for users and programmers,

2

3

interfering as little as possible with usual software development cycles, and resulting in automatic

documentation with a minimum of overhead. Alida’s concept is applicable to any data analysis

process.

Download of source code and binary bundeks as well as installation instructions are abvail-

able on Alida’s web-page http://www.informatik.uni-halle.de/alida.

3

http://www.informatik.uni-halle.de/alida

4 1 INTRODUCTION

4

5

2 The user’s view

2.1 Quick starter

After installation it is easy to explore the user interfaces automatically generated by Alida using

the shipped demo operators.

The generic graphical user interface may be invoked using the application ALDOpRunnerGUI

in a package de.unihalle.informatik.Alida.tools. It may be started from your favorite IDE

or from the command line by

java de.unihalle .informatik.Alida.tools .ALDOpRunnerGUI

as soon as the CLASSPATH is set correctly. This will bring up a window displaying a package tree of

all available operators which at the moment are the set of demo operators shipped with Alida

(see Fig. 3). You may unfold the demo package and select the operator ALDCalcMeanVector

which is to compute the mean of a vector of numbers.

Once you choose to configure the operator a configuration frame pops up (Fig. 2). The

operator configuration pane lists the parameters of this operator which are separated into re-

quired, optional, and supplemental parameters (see Sec. 2.2 for more details on the parameters

of operators). If you hover of the parameter ’Compute mean free data’ the tooltip displays

the data type of the parameter and a descriptive text. Set this parameter to true by checking

the box associated with the parameter. The input data may be supplied selecting ’Configure

Collection’ which in the newly created window (Fig. 2, window bottom left) allows to add or

delete elements and to enter values frame. As soon as you have entered values, the run button

in the operator configuration frame turns to yellow to indicate that all required parameters of

ALDCalcMeanVector are defined and the operator is ready for execution. After completion a re-

sult frame will show up displaying the resulting mean value. As the parameter ’Compute mean

free data’ is declared as an INOUT parameter its value is displayed in this result frame as well.

The operator ALDCalcMeanVector can also be invoked from commandline using the

application ALDOpRunner:

java de.unihalle .informatik.Alida.tools .ALDOpRunner ALDCalcMeanVector \
data=’ [1.0,1.5,2.2,0.4] ’ doMeanFree=true mean=− meanFreeData=−

The former call will execute the operator with a vector of four doubles and requests to compute

the mean free data vector in addition to the mean of data. Setting the output parameters mean

and meanFreeData to - request to print the results to the standard output, yielding

5

6 2 THE USER’S VIEW

Figure 2: Screenshot of the automatically generated control window for the operator ALDCalcMeanVec.

meanFreeData = [−0.27500000000000013 , 0.22499999999999987 ,

0.925 , −0.8750000000000001]

doMeanFree = true

mean = 1.2750000000000001

2.2 Alida operators

The heart of Alida’s concept are operators that implement all data analysis capabilities. Oper-

ators are the only places where data are processed and manipulated. Examples for data to be

manipulated are, e.g., experimental measurements, sets of DNA sequences, or for image anal-

ysis images and sets of regions comprising a segmentation result. An operator receives zero or

more input objects comprising all input data the operators is expected to operate on. Operators

with zero inputs are operators which for example create a data object for given parameters or

read data from file. Further input to an operator are parameters which configure or modify the

processing on the input data. Examples are the selection of a subtype of processing, e.g. should

experimental measurements be summarized by their mean or their median, a mask-size of a filter

to be applied to an image, or maximal number of iterations for a gradient descent algorithm.

The distinction of an input acting as input data or as a parameter is not clear in all cases. As an

abstract example consider an operator which is to compute the scalar product of two vectors.

In this case, both vectors are most likely considered as input data. However, if the operator is

to normalize a data vector by a scalar normalizing constant, this scaling factor may either be

considered a input or as a parameter. Therefore, Alida does not distinguish between input data

and input parameters. A parameter of an operator may be optional.

6

2.3 Graphical user interface 7

An operator produces zero or more output objects as the result of processing. An operator

with zero output objects will, e.g., write data to disk.

All input and output data are denoted as parameters in Alida. The role of a parameter is

identified by the direction of the parameter, which obviously may be input or output. In cases,

where an input object is destructively modified, this parameter has the direction input and

output (INOUT). An example is a vector which is modified in place.

In addition to parameters giving the input data and configuration of the operator and out-

put data representing the results of processing, an operator may use supplemental parameters.

Examples include flags to control output or debugging information and intermediate results

produced by an operator. By definition the setting of supplemental parameters must not influ-

ence the data processing nor the results returned as output data. Consequently, supplemental

parameters are not documented in the processing history.

The relevant features defined for parameters in Alida are

• the direction of the parameter, which may be IN, OUT, INOUT,

• a boolean indicating whether the parameter is supplemental,

• a boolean indicating whether the parameter is required or optional (which is only inter-

preted for non-supplemental IN and INOUT parameters)

• a label used, e.g., in graphical user interfaces,

• a textual explanation of the parameter,

• a data I/O order by which parameters can be ranked for generic GUI or commandline

interface generation, and

• an expert mode which, e.g., allows to hide parameters for advanced configuration from

non-expert users.

The application of operators may be nested as one operator may call one or more other

operators. At the top of this hierarchy we have typically user interfaces as described above.

Their parameter settings are facilitated via files, GUIs, commandline, or the console.

2.3 Graphical user interface

Easy and prompt access to new and improved data analysis algorithms is essential in many fields

of application where the development of data analysis algorithms and progress on the application

side are deeply linked to each other. Alida meets these requirements by providing a mechanism

to automatically generate handy graphical user interfaces (GUI) for all operators implemented

within its framework.

7

8 2 THE USER’S VIEW

Figure 3: Screenshot of the main window of Alida’s operator runner with the ’demo’ package unfolded.

Operator selection The operator GUIs can easily be invoked from Alida’s graphical operator

runner, named ALDOpRunnerGUI, to be found in the package de.unihalle.informatik.Ali-

da.tools. Upon invocation the main window of the operator runner is shown from where oper-

ators can be selected for execution. A screenshot of the main window is displayed in Fig. 3.

The main part of the window is formed by the tree view of all available operators hierar-

chically arranged due to their package structure. From this view the operators to be executed

can be chosen. An operator can be invoked by either double-clicking on its item in the tree, or

by selecting the entry with a single mouse-click and then pressing the ’Configure Operator. . . ’

button at the bottom of the window. Note that the tree view allows to configure the set of

initially unfolded packages, i.e. visible operators. To this end the user needs to provide a file

with the set of his or her favorite operators, and set a related environment variable to the name

of that file (see Sec. 2.7 for details).

To further ease operator selection and improve usability of the operator runner Alida sup-

ports two different categories of operators, i.e. application and standard operators. While the

first set of operators is mainly dedicated to non-expert users and often targets at concrete ap-

plications, the second set additionally subsumes more sophisticated operators often being very

specialized. The tree view of the operator runner window allows to switch between both sets by

selecting the appropriate category via the item ’Operator Level’ in the window’s menubar. Note

that the menubar also grants access to Alida’s online help.

8

2.3 Graphical user interface 9

Figure 4: Automatically generated control window for the Alida demo operator MatrixSum.

Operator configuration Once an operator has been selected the corresponding operator

control window pops-up (Fig. 4). It allows for configuration and execution of the operator. The

window is subdivided into three parts, i.e. it consists of a menubar, a control section with a set

of buttons at the bottom, and the configuration section with different tabs which occupies the

largest fraction of the window. For most operators there are two tabs available. The first one

denoted ’Operator Configuration’ subsumes graphical elements for handy configuration of the

operator’s parameters. As operator parameters may have different data types, and each data type

requires individual I/O handling, with each data type a specific graphical element is associated.

For example, for inserting values for native parameters of type int or double a simple text field

is displayed, while for arrays and collections buttons are shown which allow to open editable

tables. The demo operator MatrixSum defines the two input parameters ’Input matrix’ of type

Double[][] and ’Summarize mode’. The latter one is linked to an enumeration class and a

corresponding combofield for selecting one of the available enumeration elements is shown. As

can be seen from the screenshot in Fig. 4 the configuration section is further subdivided into

required, optional and supplemental parameters. The demo operator in this example does not

define any optional parameters.

Batch configuration The second tab in the configuration section denoted ’Batch Mode Con-

figuration’ provides access to Alida’s built-in support for batch processing. The basic idea of

the batch mode is to automatically execute an operator multiple times with different input val-

ues for a certain parameter. Consequently, on the tab a single input parameter of the operator

can be selected and configured for batch processing. In Fig. 5 the tab for batch mode config-

9

10 2 THE USER’S VIEW

Figure 5: Screenshot of the tab for batch configuration of the operator ’ALDArrayMean’. As the operator

expects as input a 1D array of type ’Double’ the user has to provide an array of type ’Double[][]’ as

batch mode input via an appropriate configuration window (visible at the bottom of this figure).

uration of the operator ALDArrayMean is depicted. The operator expects as input an array of

type Double[]. After activating the batch mode via the corresponding checkbox it is possible

to configure this parameter. In this case the user has to provide an array of type Double[][] as

input for the operator3 (see Fig. 5).

During batch processing the operator is run multiple times, each time processing a certain

row of the input array (see subsequent paragraph). The result of such a batch procedure is

given by a summary of selected operator output parameters. The parameters of interest have to

be selected on the batch tab as well, and upon termination of the batch run the values of the

different runs are appropriately summarized (Fig. 6). Note that not all operators allow batch

processing. For these operators the batch mode tab is not shown. The batch mode support in

Alida is in an early state and currently there is batch support only for very few input and

output parameter data types.

Operator execution If the operator has been properly configured, either for normal execution

or for batch processing, it can be invoked from the buttons in the control section of the window.

By default this section only contains a button labeled ’Run’, apart from the button ’Close’ to

close the operator control button. Once the ’Run’ button is colored yellow the operator is ready

for execution. If it has red color, the configuration is not yet completed, a green color indicates

that the operator was already executed with the given set of parameters and cannot be run

again unless the configuration is changed. When the run button is clicked Alida executes the

operator. While the operator is running the button takes a blue color. Upon termination its

color switches to green and a result frame is displayed summarizing the results (Fig. 7).

3Note that if the batch mode is activated for a certain parameter it is not possible to configure the parameter

via the ’Operator Configuration’ tab.

10

2.3 Graphical user interface 11

Figure 6: Window summarizing the batch processing results for the operator ’ALDArrayMean’. Each entry

of the result array refers to the mean of the elements in one row of the batch mode input array (Fig. 5).

Figure 7: Result window for the demo operator MatrixSum as displayed upon termination. On the left the

actual result window is shown, while on the right the result for the operator’s output parameter ’sums’

is shown which here is the set of row-wise sums of a two-dimensional input array. This window pops-up

by clicking the ’Show data. . . ’ button from the result frame.

Besides generic execution of operators in terms of invoking an operator and displaying the

results, Alida also supports interactive operator execution. To this end the framework defines

an additional operator base class denoted ALDOperatorControllable which allows for user

interaction in terms of pausing, resuming or interrupting an operator run. For these operators

additional control elements are displayed in the control section of the window (Fig 8).

In detail, step-wise execution is feasible, i.e. a step size can be specified. Upon execution the

operator is then paused after the given number of steps and the user needs to resume execution

by clicking the button ’Next Step’. Note that the definition of a step is left to the programmer

of an operator, i.e. is operator-specific. Controllable operators can also be paused and resumed

directly via the corresponding buttons.

Menubar The menubar of the operator control window allows for additional actions. From

the menu item ’File’ it is possible to save the current operator configuration to a file on disk

11

12 2 THE USER’S VIEW

Figure 8: Control window for an operator supporting interactive execution. Note the set of additional

control elements at the bottom of the window.

and to load a configuration from file. Note that the batch mode configuration is currently

not included in this file. From the ’Actions’ menu the operator can be run as well. Finally,

the item ’View’ allows to switch between different modes of parameter display. Besides defining

required, optional and supplemental parameters Alida supports different modes for a parameter.

In detail, a parameter can be declared as standard or advanced. While standard parameters are

assumed to be the most important parameters of an operator, advanced parameters allow for

more sophisticated configuration, however, can most of the time be ignored by non-expert users.

Consequently, the parameter view can be switched between displaying all parameters in mode

’Advanced’, and displaying only the standard parameters in mode ’Standard’.

2.4 Graphical workflow editor: Grappa

Most of the time complex data analysis tasks cannot be solved by only applying a single operator

to the data. Rather selections of various operators need to be combined into more sophisticated

workflows to extract desired result data. Alida inherently supports the development of such

workflows. On the programmatic level it provides extensions of the operator concept towards

workflow objects, and on the user side it includes Grappa, the Graphical Programming Editor

for Alida. Grappa allows for designing and manipulating workflows via graph edit operations,

hence, offers an intuitive interface and large flexibility for developing workflows.

A workflow in Alida is defined as a graph data structure. Each node of the graph represents

an Alida operator, while edges between different nodes encode the flow of data and control.

Each node owns a selection of input and output ports which are associated with the operator’s

parameters. Consequently, edges are directed, i.e. an edge always connects an output port of

one operator node with an input port of another. Grappa visualizes such workflow graphs and

supports manual editing, manipulation, and also workflow execution and analysis of results.

Figure 9 shows a screenshot of Grappa’s main window. It is basically divided into two

sections. On the left the node selection menu is visible, while on the right the workbench area is

12

2.4 Graphical workflow editor: Grappa 13

Figure 9: Screenshot of the graphical editor Grappa. In addition to the editor’s main window (top left) two

configuration windows for data input (bottom) and two operator result frames (top right) are displayed.

located. In addition, the window features a menubar for configuring Grappa, loading and saving

workflows, and accessing the online help.

2.4.1 Operator Node Selection Menu

In the selection menu on the left of Grappa’s main window all Alida operators found in the

classpath upon initialization are listed as potential nodes for Grappa workflows. In analogy to

the graphical user interface (see Sec. 2.3) they are arranged in a hierarchical ordering according

to their package structure. The different package subtrees can be folded and unfolded by double-

clicking on a folder’s name in the selection tree, or by single-clicking on the circle displayed left

to the folder icon. Again as for the graphical user interface Alida allows to customize the set

of unfolded operators upon start-up to the user’s needs (refer to Sec. 2.7 for details). Operator

nodes can be added to a workflow by double-clicking on the operator name. A new operator

node is then instantiated in the top left corner of the corresponding workflow tab, i.e. the active

workflow (see below). Alternatively, an operator can be selected by clicking once on its name

and afterwards clicking once on the position in the workflow tab where the new operator node

should be positioned.

2.4.2 Workbench Area

Workflows can be designed and executed in the workbench area on the right of the main window.

It allows for instantiating multiple workflows in parallel where each workflow is linked to an

individual tab of the workbench panel. A new workflow tab can be added via the item ’New’

13

14 2 THE USER’S VIEW

in the context menu of the workbench. The context menu is displayed upon right-click on an

empty location of the workbench area. Upon selecting the item ’New’ a new tab is added to the

workbench panel. By default the name of the new workflow is ’Untitled’, but it can easily be

renamed via the corresponding item ’Rename’ in the workbench context menu. Via this menu it

is also possible to close a workflow tab if no longer required. Note that its contents are lost if not

saved before. The currently selected tab in the workbench contains the active workflow which

can be edited and where operator nodes can be added as outlined in the previous subsection.

Operator Nodes For each operator selected via the selection menu a node in terms of a

rectangle is added to the currently active workflow. Above the rectangle the name of the operator

is displayed, while on its left and right side the operator’s input and output ports are shown as

circles and squares. Circles are associated with operator parameters of directions IN or OUT, while

squares refer to parameters with direction INOUT (Sec. 3.1.2). The latter ports are duplicated on

both sides of the node. The colors of the circles indicate their type. Blue circles refer to required

parameters, yellow circles are associated with optional parameters, and red circles are linked

to supplemental parameters. To the left and right of the ports, respectively, the name of the

corresponding parameters are written. Once operator nodes have been added to a workflow they

can easily be dragged and repositioned as well as resized via intuitive mouse actions.

For each operator node a context menu can be popped up by clicking on the node with the

right mouse button. From this menu it is possible to delete the node (item ’Remove’), or to

switch the view mode between ’Standard’ and ’Advanced’. The view mode refers to the mode

that operator parameters can have (Sec. 3.1.2). In ’Standard’ view mode only the standard

parameters of an operator are visible, while in advanced mode all parameters are shown. From

the context menu of a node it is also possible to configure the node (item ’Configure’).

Node Configuration and States On selecting the item for configuration a window is dis-

played which allows for entering parameter values (for an example, see the two windows at the

bottom of Fig. 9). The window is automatically generated, i.e. actually the same mechanisms as

for executing operators via the graphical operator runner are applied (cf. Sec. 2.3). Accordingly,

the configuration window is identical to the corresponding operator control window and shares

the same layout except that the control buttons at the bottom are missing.

Operator parameters can directly be specified via the configuration window for a certain

node or by dragging edges between ports of different nodes with the mouse to propagate output

data from one node as input data to another. To add an edge move the mouse over an output

port of a node until the port is surrounded by a green square, then press the left mouse button.

Subsequently, while keeping the button pressed, move the mouse to the desired input port

of another node. Once a green rectangle shows up around the target input port, release the

button. Note that on dragging edges Grappa performs type and validity checks. Only ports

14

2.4 Graphical workflow editor: Grappa 15

being associated with compatible parameter data types can be linked to each other. Also edges

are forbidden that would induce cycles into the workflow graph.

Nodes in a workflow can have different states indicated by the color of their border. Red

framed nodes are not ready for execution, i.e. their configuration is not complete. If a node is

readily configured and can directly be executed its border has a yellow color, while nodes that

are configured, however, require additional input data from preceding operator nodes have an

orange color. Prior to executing these orange nodes it is, thus, necessary to execute the preceding

nodes first. Note that Grappa takes care of such dependencies, i.e. automatically executes nodes

first from which result data is required for proper workflow or node execution. The state of a

node is updated by Grappa in real-time, i.e. each change in its configuration directly invokes

internal checkings and may result in a change of the node’s color.

Workflow Execution Grappa offers various modes for executing a complete workflow or

parts of it. From the context menu of the workbench the item ’Run’ is available which executes

the complete workflow, i.e. all nodes currently present on the tab. From the context menu of a

single node and its ’Run...’ item also the whole workflow can be executed (item ’Workflow’).

Alternatively, via the item ’Nodes from here’ it is possible to only execute the nodes of the

workflow subgraph for which the current node is the root (of course considering required depen-

dencies). Finally, the item ’Node’ allows for running the workflow until the node in question.

As mentioned before Grappa automatically takes care of resolving dependencies, i.e. upon exe-

cuting a node all nodes having a yellow or orange border and being predecessors of the node in

question are also executed. Note that the execution of a workflow will fail if one of the nodes is

still colored red, or if a node does not produce proper output data required by others.

After successful execution of the workflow or a subset of nodes the colors of the corresponding

nodes change to green indicating that result data are available. For all terminal nodes having no

successor the result frames are automatically opened (see Fig. 9 top right). For all other nodes

the result data can graphically be examined via the nodes context menu from which the result

windows can manually be opened. Note that once a node has been executed and is colored in

green it is not possible to re-execute the node until its configuration or at least the configuration

of one of its preceding nodes was changed.

2.4.3 Menubar

The Grappa main window features a menubar offering quick access to the basic functions of

Grappa and some additional convenience functionality simplifying the work with the editor.

Via the menu item ’Workflow’ on the one hand workflows can be added, renamed or closed,

and they can be executed or interrupted. On the other hand workflows can be saved to and

read from disk. By saving a workflow currently two files are written to disk, one containing

the information about the nodes and their configuration, and one storing graphical information

15

16 2 THE USER’S VIEW

regarding the current workflow layout. Both are required to load a workflow again. The first one

has the extension awf, the latter one the extension awf.gui.

As outlined in Sec. 2.3 Alida supports two categories of operators, i.e. STANDARD operators

and operators mainly dedicated to direct APPLICATION. The menubar allows to switch the view

in the selection menu between both categories via the item ’Operator Level’. Finally, the

menu item ’Help’ grants access to Alida’s online help system where information about its

functionality and descriptions of some of the demo operators can be found.

2.5 Commandline user interface

The command line user interface of Alida allows to invoke all Alida operator properly an-

notated to grant generic execution. In the following examples the operators MatrixSum and

ApplyToMatrix included as a demo operators are used to explain the usage and features of this

user interface.

Basics You may invoke the matrix summation MatrixSum operator by

java de.unihalle .informatik.Alida.tools .ALDOpRunner MatrixSum \
matrix=’ [[1,2,3],[4,5,6]] ’ sums=−

which returns as result on standard output

sums = [6.0,15.0]

Parameter values are specified as name=value pairs. Alida’s syntax for 2D array should be

self-explanatory from this example. As the mode of summation is not supplied as a parameter

its default is used.

The name of operators need not to be fully qualified if they remain unambiguous. There

are further options for abbreviation as well as regular expressions, see the help message of

ALDOpRunner.

Note, that the command

java de.unihalle .informatik.Alida.tools .ALDOpRunner MatrixSum matrix=’[[1,2,3],[4,5,6]]’

will return no output at all as the command line user interface returns only those output pa-

rameters which have been requested by the user. This is facilitated providing a dummy value

for an output parameter, which is - in the example.

The enumeration defined in MatrixSum for summarizeMode is set in the next example. If a

wrong value for an enumeration is given the ALDOpRunner prints a list of admissible values. The

16

2.5 Commandline user interface 17

example also demonstrates redirection of output to a file, sums.out in this case, which is the

standard in Alida if the value of an output parameter is preceded with a @.

java de.unihalle .informatik.Alida.tools .ALDOpRunner MatrixSum matrix=’[[1,2,3],[4,5,6]]’

summarizeMode=COLUMN sums=@sums.out

Input can be read from file as well:

java de.unihalle .informatik.Alida.tools .ALDOpRunner MatrixSum matrix=@data sums=−

where the file data contains the string defining the matrix, e.g., [[1,2,3],[4,5,6]]

Derived classes The demo operator ApplyToMatrix takes as one parameter another

operator. In this case this operator needs to extend the abstract class ALDSummarizeArrayOp.

When invoking the ApplyToMatrix operator from command line we thus have to handle derived

classes as value for parameters. In the graphical user interface Alida features a combo box

where we may choose from. In the command line interface Alida allows to prefix the value of

a parameter with a derived class to be passed to the operator. This is necessary as Alida has,

of course, no way to itself decide if and which derived class is to be used. Alida’s syntax is to

enclose the class name in a dollar sign and a colon. The value of the parameter is empty in this

example as the operator ALDArrayMean can be instantiated with out arguments. As evident in

the following example, abbreviations of the fully qualified class name are accepted as long as

they are unambiguous.

java de.unihalle .informatik.Alida.tools .ALDOpRunner ApplyToMatrix \
matrix=’ [[1,2,3],[4,5,6]] ’ \
summarizeMode=ROW \
summarizeOp=’$ALDArrayMean:’ \
summaries=−

results in

summaries = [2.0,5.0]

ALDOpRunner may be persuaded to show all operators derived from ALDSummarizeArrayOp

and known within the user interface if we enter an invalid class name:

java de.unihalle .informatik.Alida.tools .ALDOpRunner ApplyToMatrix \
matrix=’ [[1,2,3],[4,5,6]] ’ \

summarizeMode=ROW summarizeOp=’$dd:’ \
summaries=−

yields

17

18 2 THE USER’S VIEW

ALDStandardizedDataIOCmdline::readData found 0 derived classes matching <dd>

derived classes available :

de.unihalle .informatik.Alida.demo.ALDArrayMean

de.unihalle .informatik.Alida.demo.ALDArrayMin

de.unihalle .informatik.Alida.demo.ALDArraySum

ERROR: reading parameter <summarizeOp> returns null

Supplemental parameters are handled like other parameters

java de.unihalle .informatik.Alida.tools .ALDOpRunner ApplyToMatrix \
matrix=’ [[1,2,3],[4,5,6]] ’ \
summarizeMode=COLUMN \
summarizeOp=’$ALDArrayMin:{}’ \
summaries=− \
returnElapsedTime=true \
elapsedTime=−

gives

summaries = [1.0,2.0,3.0]

elapsedTime = 4

Parameterized classes Alida supports so called parameterized classes. A parameterized class

is essentially just an ordinary class where however some member fields have been declared to be

required for an object of this class to be properly instantiated by Alida. These member fields

resemble quite some analogy to parameters of operators and share some properties (see Sec. 3.1.3

for details). The syntax for parameterized classes is a comma separated list of name=value pairs

enclosed in curly brackets where names refer to annotated member variables of the parameterized

class. This is shown for the class ExperimentalData which holds an array of experimental data

and descriptive text as annotated member fields.

java de.unihalle .informatik.Alida.tools .ALDOpRunner NormalizeExperimentalDataOp \
experiment=’{data =[[1,2,3],[2,2,2],[100,103,110]], description=”Demo experiment”}’ \
result=−

yields

result = { normalized = true ,

description = ”Demo experiment” (Normalized) ,

data = [[−1.0,0.0,1.0],[0.0,0.0,0.0],

[−4.333333333333329,−1.3333333333333286,5.666666666666671]] }

18

2.6 History 19

If a class derived from ExperimentalData was to be supplied to the operator, the curly

brackets can be prefixed by a derive class definition starting with a dollar sign and ending with

a colon as shown for the summarizing operators above.

Advanced examples

The following example shows, that the standard sytnax used for file I/O may be nested

java de.unihalle .informatik.Alida.tools .ALDOpRunner NormalizeExperimentalDataOp \
experiment=’{data=@myexp.data,description=”Demo experiment”}’ result=@normExp.data

Here, the the parameter description of the parametrized class ExperimentalData is directly

parsed from the string given on the command line, while the parameter data is parsed from the

content of the file myexp.data.

Likewise, if an output parameter is a parametrized class, a subset of its parameters may be

written to file, a part to standard output:

java de.unihalle .informatik.Alida.tools .ALDOpRunner ALDPCAOp \
experiment=@normExp.data result=’{data=@pca.data,description=−}’

will return

result = { description=”Demo experiment” (PCA) , data written using @pca.data }

which indicated that the data of the resulting experiment have been written to the file pca.data

as requested.

2.6 History

One of the main features of and Alida is the capability of automatically documenting data

processing pipelines. The operator concept allows automatically logging all data manipulations,

which can subsequently be used to convert the processing history into a directed graph data

structure denoted processing graph in the following.

The Alida operator concept defines operators as the only places where data are processed

and manipulated. Each invocation of an operator is associated with a certain configuration of

the operator, defined by the values of its IN and INOUT parameters. A data analysis pipeline

usually consists of a set of different operators that are applied to incoming data and produce

result data. The order in which the operators work on the data depends on the specific pipeline

as well as on the input data. The invocation of operators can be of pure sequential nature or

subsume parallel processing steps. In addition, a nested application of operators is possible.

Given this principle each analysis pipeline and its data flow may be interpreted and visualized

as a directed acyclic graph (cf. Fig. 10 for an example).

19

20 2 THE USER’S VIEW

The processing graph is stored in XML format in a file accompanying the actual data object

file. The format basically relies on GraphML4 with some Alida specific extensions. If the history

is stored externally when a data object is written to disk depends in general on the data type.

However, when invoking operators from the commandline user interface, most Alida data types

will write a history if output of a parameter is redirected to a file. Alida used the extension

.ald of a MiToBo processing graph file. The same is true when reading data. I.e. in general it

depends on the data type if a history is read from file, if existing, and the commandline user

interface will do in most cases.

Note, the identity of data is not preserved in the processing history across file boundaries. If

two (or more) input data for the current top level operator are loaded from the same file, both

will nevertheless be displayed as different data nodes in the history. The reason is that object

identity is not – and maybe even cannot – be checked from the processing history of former

operations.

A processing graph basically consists of operator and data nodes which are connected by

edges indicating the flow of data, as can be seen from Fig. 10. The figure shows a screenshot

of Chipory which is a graph visualization tool derived from Chisio (see Appendix A for de-

tails). Within the processing graph each operator node, which is linked to the invocation of a

specific operator, is depicted as a rectangle with the operator’s classname in the bottom line.

For each input and output parameter object the operator node features input and output ports

which may be conceived as the entry or exit points of data into and out of the operator. These

ports are depicted as filled ellipses in light green (input ports) and dark green (output ports),

respectively. Each input port has exactly one incoming edge, while an output port may be

connected to multiple target ports, depending on where the data is passed to. In Fig. 10 the re-

sult clusters produced in the operator ALDClusterExperiment is handed over to the operator

SummarizeClusters as well as returned as a results of the operator AnalyzeExperiment. Each

port of an operator has an individual name indicating the input or output object associated

with the port.

In addition to operator nodes and their ports there are also data nodes in the graph cor-

responding to the creation of new data objects, e.g., when data is read from file, cloned or

generated from scratch. These are depicted as triangles filled in light grey in most cases. If data

is read from file, the triangle is tagged by a string and colored orange. If in addition a processing

graph of a former analysis procedure was read this history is also included into the processing

graph and connected by a dashed edge.

2.7 Configuring Alida

Sometimes it is desirable to configure some properties of Alida or behavior of operators at

runtime, e.g., to specify initial files or directories operators should work on. Alida basically

4GraphML website, http://graphml.graphdrawing.org/

20

http://graphml.graphdrawing.org/

2.7 Configuring Alida 21

Figure 10: A processing graph: the directed acyclic graph represents the application of nested operators.

Calls to operators are depicted as rectangles, input and output ports as ellipses filled in light or dark

green, respectively. The yellow ellipse indicates the result data object to which this processing graph is

linked to. The triangles relate to newly generated data objects which are colored in grey unless the data

object was read froom file. In this case the triangle is colored orange.

supports two different ways for user specific configuration:

a) environment variables

b) properties of the Java virtual machine specified with the

option ’-Dproperty=value’ upon invocation of the JVM

This order already reflects the priority of the options, i.e. environment variables overwrite JVM

properties. If for a certain requested property no configuration values are provided by any of

these ways, default settings are used. Some variables of general interest are used by Alida and

given below. Further variables may be introduced, e.g., by additional operators implemented in

the framework. In the following list, both the environment variable and the name of the property

are given (property/environment variable)

alida.oprunner.level / ALIDA OPRUNNER LEVEL

21

22 2 THE USER’S VIEW

Used by ALDOpRunnerGUI, ALDGrappaRunner, Op Runner, Grappa Editor to configures

which set of operators is to be displayed initially in the selection menu. Possible options

are either all available operators (’standard’) or just the ones categorized as being easier

to use (’application’). The default is ’application’.

alida.oprunner.favoriteops / ALIDA OPRUNNER FAVORITEOPS Holds a colon separated list

of filenames. Each file contains lines of fully qualified operator names which will be unfolded

in the operator selection window when starting the graphical user interface or Grappa (see

Sec. 2.3 and 2.4). The default is ${java.home}/.alida/favoriteops.

alida.oprunner.workflowpath / ALIDA OPRUNNER WORKFLOWPATH

Here a colon separated list of directories may be specified each of which is searched for work-

flows saved in a file. These workflows are incorporated in the tree of available operators in

the graphical user interface in Grappa. The default is ${java.home}/.alida/workflows.

alida.versionprovider class / ALIDA VERSIONPROVIDER CLASS

Implementation of de.unihalle.informatik.Alida.ALDVersionProvider to be used for

version information retrieval (Sec. 3.3.4).

22

23

3 The programmer’s view

3.1 Alida operators

3.1.1 Using operators

To use an operator an object of the operator class needs to be instantiated, and input data as

well as parameters have to be set for this object. Subsequently the operator can be invoked using

the following method runOp(). After return from that routine the results can be retrieved from

the operator.

Important note: Do no invoke an operator directly by its operate() method as this will

prevent the processing history from being constructed. This only would be feasible from within

the package of the operator as the abstract method operate() is declared protected.

An example of how to use an operator is given in Fig. 11. First a new instance of the operator

is created, and subsequently input parameters are set. If all required input parameters have been

assigned for the operator object, it can be invoked calling its runOp() method. Upon invocation

of runOp() the validity of input parameters is checked. Validity requires for an operator that all

required input parameters have values different from ’null’. In addition the implementation of

an operator may impose further constraints which, e.g., may restrict the admissible interval of

numerical parameters (see Sec 3.1.3). Subsequent to successful validation the method operate()

is invoked. Each operator is supposed to implement this method as it does the actual work.

After return from runOp() the resulting output data can be retrieved from the operator either

directly accessing the member variables or by getter methods as implemented by the operator.

Note, that the value of the operator parameters may have changed upon return from runOp()

due to modifications in the operate() method. runOp() may throw an exception if validation

of inputs and parameters or data processing itself fails.

1 ApplyToMatrix normalizeOp = new ApplyToMatrix(this.experiment.getData());

2 normalizeOp.setSummarizeMode(ApplyToMatrix.SummarizeMode.ROW);

3 normalizeOp.setSummarizeOp(new ALDArrayMean());

4 normalizeOp.runOp();

Figure 11: An example of how to use an operator in this case NormalizeExperimentalDataOp.

For the runOp method two version are available. Besides the one mentioned above without

arguments the method runOp(hidingMode) is available where the value of hidingMode influ-

ences the visibility of the operator invocation in the history. If hidingMode is VISIBLE then the

invocation of the operator is visible. If the value is HIDDEN the invocation of the operator and

all is children is hidden. Finally, if hidingMode is set to HIDE CHILDREN the operator itself is

visible, but all its children are hidden from the history See Section 3.3 for more details.

23

24 3 THE PROGRAMMER’S VIEW

An operator object may be reused to invoke processing several times, where inputs param-

eters may be changed between subsequent calls of runOp().

3.1.2 Implementing operators: Basics

Each operator in Alida is implemented by extending the abstract class ALDOperator. The

example given in Fig. 12 is the implementation of the demo operator MatrixSum included in the

package de.unihalle.informatik.Alida.demo. It shows that an operator may be annotated

with the @ALDAOperator annotation provided by Alida. Some functionality of Alida, most

importantly the execution via automatically generated user interfaces, requires this annotation

to register the class as an Alida operator. If an operator is annotated with @ALDAOperator a

public standard constructor has to be supplied (see below), otherwise a compilation error will

result. Note, that abstract classes can not be annotated with @ALDAOperator.

An operator may declare its preferences for generic execution, i.e. whether to be or not to

be generically executed, by using the parameter ExecutionMode of the annotation. It currently

supports four possible values:

• NONE (default), to prohibit generic execution completely

• SWING, to allow generic execution via GUI only,

• CMDLINE, to allow generic execution via commandline only, and

• ALL, to allow for generic execution in general.

Furthermore operators can be categorized into the mode STANDARD or APPLICATION. The

latter one is intended to subsume only operators that can easily be applied by non-expert

users, while the first category subsumes all operators. The graphical operator runner included

in Alida provides two different view modes for either only operators annotated as application,

or all operators registered according to the @ALDAOperator annotation.

1 /∗∗
2 ∗ Demo operator to calculate colum or row sums of a 2D array.

3 ∗
4 ∗ @author posch

5 ∗/
6 @ALDAOperator(genericExecutionMode=ALDAOperator.ExecutionMode.ALL,

7 level =ALDAOperator.Level.APPLICATION)

8 public class MatrixSum extends ALDOperator {

Figure 12: Example deriving the operator MatrixSum.

There are five issues which have to be taken care of when implementing an operator, namely

24

3.1 Alida operators 25

• defining the parameters of the operator,

• the functionality of operation per se,

• constructors,

• optionally constraint admissible parameter values

• and to indicate whether this operator prefers a complete processing history or a processing

history according to data dependencies.

The first three issues are described in the following while the last two is deferred to Sec. 3.1.3.

Optionally

Parameters. Each operator needs to define its parameters by annotation of the correspond-

ing member variables. Currently a modified version of the annotation @Parameter as under

development for ImageJ Version 25 is used. The relevant fields of this annotation are:

• direction

• required

• label

• description

• supplemental

• dataIOOrder

• mode

Fig. 13 shows an example how parameters are defined. For direction IN and INOUT the

field required defines whether this parameter is required or optional. The field description

of the parameter gives a textual explanation and the label may be used for display purposes.

Setting the field supplemental to true declares the corresponding parameter as supplemental.

Via the Java inheritance mechanism an operator inherits all parameters defined in its super

classes.

The annotation parameter dataIOOrder allows to rank parameters in interface generation.

For example, in GUI generation it might be favorable to place the most important parameters on

top of the window, while parameters of minor importance only appear at the bottom. Likewise

in commandline tools some parameters might be supposed to appear earlier in the help system

than others. Such a ranking can be achieved by specifying an order. Smaller values refer to a

high importance of the corresponding parameter, larger values to minor importance.

Finally Alida allows to categorize operator parameters according to the level of knowledge

required for their use. Often some parameters of operators are only of interest for experts, and

5http://imagejdev.org/2011/04/01/imagej-v200-alpha1

25

26 3 THE PROGRAMMER’S VIEW

1 /∗∗
2 ∗ Input matrix

3 ∗/
4 @Parameter(label= ”Input matrix”, required = true,

5 direction = Parameter.Direction.IN, description = ”Input matrix.”)

6 private Double[][] matrix;

7

8 /∗∗
9 ∗ Mode of summarizing

10 ∗/
11 @Parameter(label= ”Summarize mode”, required = true,

12 direction = Parameter.Direction.IN, description = ”Sum over columns or rows?”)

13 private SummarizeMode summarizeMode = SummarizeMode.ROW;

14

15 /∗∗
16 ∗ 1D Array of sums.

17 ∗/
18 @Parameter(label= ”sums”,

19 direction = Parameter.Direction.OUT, description = ”Row or column wise sums.”)

20 private transient Double[] sums = null;

Figure 13: Example defining the parameters of MatrixSum.

non-expert users do not even have to be aware of them. To this end each parameter may be

annotated as STANDARD or ADVANCED. Alida’s graphical user interface allows to switch the view

of parameters between standard and advanced accordingly.

Operator functionality. The method operate() implements the functionality of the op-

erator. All data passed into and returned from the operator have to be passed through the

parameters of the operator. They may be set and retrieved with the generic getParameter and

setParameter methods of ALDOperator, by specific setter- and getter-methods as implemented

by the operator or directly accessing the member fields if allowed. To invoke the processing

within an operator, i.e. to run its operate() routine, the final method runOp() supplied by

ALDOperator needs to be called by the user of an operator.

Constructors. As noted above, for automatic code generation and documentation capabilities

as well as generic execution of an operator the operator class needs to implement a public

standard constructor as shown in Fig. 14 This is, however, not necessary if the operator is only

to be used explicitly by the programmer and not annotated. Further convenience constructors

26

3.1 Alida operators 27

1 /∗∗
2 ∗ Default constructor.

3 ∗ @throws ALDOperatorException

4 ∗/
5 public MatrixSum() throws ALDOperatorException {
6 }
7

8 /∗∗
9 ∗ Constructor.

10 ∗
11 ∗ @param matrix Input matrix.

12 ∗ @throws ALDOperatorException

13 ∗/
14 public MatrixSum(Double[] [] matrix) throws ALDOperatorException {
15 this.matrix = matrix;

16 }

Figure 14: Constructors of MatrixSum

may be implemented which additionally set parameters.

Important note: It is strongly recommended that an operator does not rely on initializa-

tions, e.g. of private fields, that are performed in a constructor and depend on the values of input

parameters. Rather it is advised that upon invocation of the operate() method an operator

performs all necessary initializations according to the parameter settings. This allows to take

into account changes of parameter values subsequent to construction of the operator object by

using the setParameter method or dedicated setter methods. Otherwise generic execution of

the operator is not feasible and the operator should not be released for generic execution

3.1.3 Implementing operators: Advanced techniques

Operators as parameters. Alida supports as parameters of an operator also any (other)

Alida operator. This is shown for the demo operator ApplyToMatrix in Fig. 15. In this case,

the class ALDSummarizeArrayOp is an abstract operator which takes a 1D array as input and

returns a summarizing scalar. Now one may implement concrete examples of such a summarizing

operation. As examples Alida ships the summation (ALDArraySum), the mean (ALDArrayMean),

and the minimum (ALDArrayMin). Each implements the operate() method and has to supply a

standard constructor. As shown in Fig. 16 the operator ALDArraySum is declared as operator on

the standard in contrast to application level, as they are not expected to be invoked as an appli-

cation. However, setting the level to standard in the menu of the graphical user interface stills

27

28 3 THE PROGRAMMER’S VIEW

1 /∗∗
2 ∗ Summarizing opererator

3 ∗/
4 @Parameter(label= ”Summarizing operator”, required = true,

5 direction = Parameter.Direction.IN,

6 description = ”Specifies the summarizing operation to apply”)

7 private ALDSummarizeArrayOp summarizeOp;

Figure 15: An example of an operator as a parameter in the operator ApplyToMatrix

1 @ALDAOperator(genericExecutionMode=ALDAOperator.ExecutionMode.ALL,

2 level =ALDAOperator.Level.STANDARD)

3 @ALDDerivedClass

4 public class ALDArraySum extends ALDSummarizeArrayOp {

Figure 16: The operator ALDArraySum as an operator in standard level.

allows their execution. When extending the super class ALDSummarizeArrayOp it is necessary

to annotate the class with @ALDDerivedClass in order to allow Alida’s dataIO mechanism to

find the derived class in automatically generated user interfaces. This holds for other parameter

types as well, see Sec. 3.1.4.

Constraints on admissible parameter values. The implementation of an operator may

impose custom constraints on the input parameters beyond the general requirement, that all

required input parameters need to have non-null values. This is achieved by by overriding the

method

public void validateCustom() throws ALDOperatorException

which, e.g., may restrict the admissible interval of numerical parameters. This method is called

by runOp() prior to the invocation of the operate method.

Preference for graph construction. Each operator may specify a preferred way to create

the processing history by setting its member variable completeDAG. The default mode is a

complete processing history, i.e. completeDAG == true, which works in all cases, but potentially

includes further operator invocations as performed in the operate() method which do not

directly influence the values of the object for which the history is constructed. To generate a

leaner history graph the programmer of an operator may choose to set completeDAG to false,

see Section 3.3 for details.

28

3.1 Alida operators 29

1 @ALDParametrizedClass

2 public class ExperimentalData {
3 @ALDClassParameter(label=”description”)

4 private String description = null;

5

6 @ALDClassParameter(label=”data”)

7 private Double[][] data = null;

8

9 /∗∗ are the data normalized

10 ∗/
11 @ALDClassParameter(label=”Is normalized”)

12 private boolean normalized = false;

13

14 /∗∗ Standard constructor is needed

15 ∗/
16 public ExperimentalData() {
17 }

Figure 17: The class ExperimentalData as an example of a parameterized class.

3.1.4 Implementing operators: Datatypes of parameters

Derived classes As noted above, if an instance of a class is to be supplied in an automatically

generated user interface as a value for a parameter of one of its super classes, Alida requires

the annotation @ALDDerivedClass.

Parameterized classes Alida provides automatic I/O of primitive data types, enumerations,

arrays, collections, and operators. In addition so called parameterized classes are supported.

Any Java class may be declared to be a parameterized class in Alida by annotating the class

with @ALDParametrizedClass as shown for the class ExperimentalData in Fig.17. The class

is annotated by @ALDParametrizedClass, and and all members to be handle in Alida’s user

interfaces are to be annotated with @ALDParametrizedClass. The label field has the same

semantics as for parameters of operators. These annotations are the only implementational

overhead to allow Alida to automatically generate user interfaces where the parameterized class

acts as a parameter. Operators acting as parameters of other operators may be viewed as special

cases of parameterized classes.

Automatic documentation The value of each IN and INOUT parameter is recorded upon

invocation of an operator via its runOp() method using the method toString() of the parameter

29

30 3 THE PROGRAMMER’S VIEW

class for later storage in the processing history. Thus, it is recommended to supply an appropriate

toString() method for data types used as parameters to yield informative histories.

If a parameter of an operator is expected to be documented in the data flow of the processing

history, it may be of any Java class being uniquely identifiable. This excludes only primitive data

types, interned strings and cached numerical objects. If the parameter need not be part of the

data flow all classes are acceptable.

Note that before returning from runOp() additional documentation is done for output ob-

jects derived from the abstract class ALDData. This class essentially features a property list which

may be used to augment data objects, e.g., by a filename or URL specifying the origin of the

data.

3.2 Data I/O Provider

For the generic execution of operators via commandline or graphical user interfaces in Alida

knowledge is required about how to perform input and output operations for parameter data

objects. In particular, in graphical contexts Alida requires functionality to query values for

parameter objects from the user via graphical input components and to adequately visualize

parameter values graphically. For invocation of operators from commandline parameter data

objects need to be instantiated from textual input, and parameter objects need to be transformed

into a user-friendly textural representation.

To enable flexible data I/O Alida implements an easily extendable provider mechanism. A

provider is a class implementing the functionality to perform I/O for objects of specific data

types, i.e. to instantiate objects from given user input and visualize their values graphically or

in a textural fashion. These providers are managed by data I/O managers which keep track of

available providers and provide methods for getting provider objects for specific data types at

runtime, e.g., to facilitate the automatic generation of graphical user interfaces.

Currently two user interface contexts are implemented in Alida, i.e. a tool for executing

operators from commandline (cf. Sec. 2.5) and a graphical operator runner based on Java Swing

(cf. Sec. 2.3). For both contexts Alida already offers built-in providers for a large variety of

different parameter data types. In detail, all primitive data types available in Java (e.g., int,

double, boolean) as well as corresponding wrapper data types (e.g., Integer, Double, Boolean),

enumerations, arrays of primitive and wrapper data types, and also all kinds of Java collections

are supported out-of-the-box. Furthermore, operators may be used as input parameters of other

operators, and by the concept of parameterized classes (Sec. 3.1.4) Alida allows for easy ex-

tensibility. In some cases, however, it might be necessary to implement a data I/O provider for

a certain parameter data type from scratch. Below we outline the basics of how to accomplish

this.

All providers in Alida are registered by I/O managers upon start-up. These managers

basically keep a map of data types and related providers and allow the framework to get a

30

3.2 Data I/O Provider 31

provider object for a certain parameter data type at run-time. Additionally they may give the

provider classes hints to adapt their functionality to the current mode of operation. The type to

these hints is specific to the context, e.g. commandline, and will be described in the following.

To enable the managers to automatically register all provider classes available on

the classpath it is necessary to annotate the provider classes with the Alida annotation

@ALDDataIOProvider. This annotation features the field priority which is used to select a

provider in case several providers handle the same data type. This allows, e.g., to override

providers delivered by Alida with custom made providers. In addition, all providers have to

implement the interface

de.unihalle.informatik.Alida.dataio.provider.ALDDataIO. .

It basically defines a single method that all providers need to implement:

public Collection<Class<?>> providedClasses();

This method is used by the I/O managers upon start-up to gather information about which

classes a specific provider supports, i.e. to fill its maps. Of course, apart from this method the

actual functionality of a provider class depends on the user interface context in which it is to be

used. In the following subsections we will now describe the specifics of implementing providers

for the Java Swing (Sec. 3.2.1) and the commandline context (Sec. 3.2.2).

3.2.1 Implementing a Swing Data I/O Provider

To enforce all providers dedicated to the Swing context to implement the corresponding graphical

data I/O concept Alida defines a specific interface for the Swing context:

de.unihalle.informatik.Alida.dataio.provider.ALDDataIOSwing.

This interface subsumes all methods to be implemented by Swing providers.

Graphical Data Input The basic workflow which Alida defines for graphical input of a

parameter data object is as follows. First a graphical component needs to be generated by the

provider suitable for querying values from the user. Such a component is for example given by

a checkbox to query the user for a boolean value, a textfield to query for a string or number,

or a combobox to let the user select a single or multiple values from a larger collection. This

component is then included in graphical user interfaces, e.g., the graphical control windows of

Alida’s graphical operator runner. Subsequently, once the user has entered appropriate values,

functionality is required to read the specified values from the graphical component. Accordingly,

the interface basically defines the following two methods:

31

32 3 THE PROGRAMMER’S VIEW

public abstract ALDSwingComponent createGUIElement(

Field field , Class<?> cl, Object obj, ALDParameterDescriptor descr);

public abstract Object readData(

Field field , Class<?> cl, ALDSwingComponent guiElement);

The first method is supposed to return a graphical component suitable for being included

in graphical control windows. In general Alida does not define any strict rules for these

components except that they have to be of type ALDSwingComponent. Objects of this type

basically wrap an object of type JComponent. Only the latter one is actually included in the

configuration and control windows. Although there are principally no restrictions on the design

of the JComponents returned by providers note that proper automatic GUI layout is only

possible if the different components do not vary too much in their sizes. Hence, it is advisable

to layout the components in such a way that they only fill one row in a panel. Elements which

naturally obey to this rule are for example buttons, text fields, and combo- or checkboxes.

If you require more complex components to query values from the user, one solution could

be to return a button as main GUI component by which a new window can be opened with

an arbitrary size where the actual parameter values can then be entered. This technique is

employed, e.g., may Alida’s standard providers for parameterized classes and collections.

Besides wrapping a graphical component, ALDSwingComponents have to implement an

event reporter interface. This interface lays the foundation for Alida to be able to visualize the

current state of an operator’s configuration in its control windows in real-time. The interface

basically enforces the graphical component to trigger events on changes of the values specified

in the graphical component. For most providers relying on Swing components as graphical

components it is sufficient to implement listeners for the Swing components and simply forward

Swing events as Alida events of type ALDSwingValueChangeEvent to the framework. Refer to

the API documentation of the interface

de.unihalle.informatik.Alida.dataio.provider.swing.components.ALDSwingComponent

and related event reporter and handler classes in the package

Alida.dataio.provider.swing.events for more details.

The createGUIElement(...) methods takes four arguments as input. The argument cl

specifies the class of the parameter object which should be read by the component (which is

of special interest for providers supporting various data types), while the obj argument allows

to pass a default value to the provider. The argument descr allows to hand over additional

information to the provider about the operator parameter with which the object is associated.

Alida uses this information, e.g., for generating more meaningful labels in the graphical control

windows. Note that if no descriptor is available, null is also a valid value, hence, providers

must account for this specical case. The first argument field can be ignored by most providers.

There are only a few providers where the object class is not sufficient to instantiate a parameter

object and where in addition the field associated with the the member variable representing the

32

3.2 Data I/O Provider 33

parameter is required to have all relevant information available. One example are collections in

Java, where the data type of the elements contained in the collection is not obvious from the

class of the collection itself.

The second method readData(...) of the ALDDataIOSwing interface takes as argument a

formerly generated graphical component guiElement and is supposed to return an object of

the class specified during generation of the component. The object should contain the value as

currently specified by the graphical component. The field argument can most of the time be

ignored by the provider, refer to the previous paragraph for details.

In addition to the formerly discussed methods the interface defines a third method

public abstract void setValue(

Field field , Class<?> cl, ALDSwingComponent guiElement, Object value);

which is supposed to set new values in the graphical component. Its arguments are quite similar to

the createGUIElement(. . .) method. The new value to be set is specified by the value argument.

Graphical Data Output For performing graphical data output the Swing provider interface

defines the method

public abstract JComponent writeData(Object obj, ALDParameterDescriptor d);

It basically takes an object obj as input and generates a suitable Java Swing component to

properly visualize the object’s value. Note that the class of the object is directly derived from

the object itself. The additional descriptor argument is used to enhance the graphical component

with more information about the object. Note that it might be null, i.e. the provider has to

check its value prior to accessing the object directly. For components generated by this method

the same rules hold as for the graphical input components. In particular, ensure that each

component does not exceed the height of one row in a panel to enable proper GUI layout.

Interaction level The I/O manager for the swing context gives providers a hint on the amount

of user interaction level the providers should generate. The reason is that there are situations

when only warnings should be signaled to the user or no pop-up of windows and user interaction

is intended at all.

3.2.2 Commandline Provider

In analogy to swing providers each commandline provider is required to implement the interface

de.unihalle.informatik.Alida.dataio.provider.ALDDataIOCmdline.

This interface defines two methods to be implemented, namely

33

34 3 THE PROGRAMMER’S VIEW

public abstract Object readData(Field field, Class<?> cl, String valueString);

public abstract String writeData(Object obj, String locatationString);

The first method is expected to instantiate an object of class cl from the string valueString.

For the meaning of the argument field see the subsection on swing providers. In general,

the syntax of the value string depends on the data type and may freely be defined by the

implementation of the provider. However, Alida offers the notion of a standardized commandline

provider taking care of derived classes as well as reading and writing to and from files (see

below). Additionally, Alida provides a commandline provider for parameterized classes featuring

a specific syntax (see Sec. 3.1.4). If appropriate if may be sensible to adopt the syntax for other

providers as well.

The method writeData is used to format the given object to textual form into a string. The

locatationString specifies whether this textual representation is to be return as the result

of the method or should be written to, e.g., a file. In the latter case the string returned may

contain information of this process, e.g. return a note that the object was written to a specific

file. As for the syntax of the valueString in readData, the syntax of the locatationString

may in principle be freely defined by each provider. However it is advisable to adhere to Alida’s

standard define by the standardized commandline provider described in Sec. 2.5. In addition,

the locatationString may also be used by a provider as a format string to modify the textual

representation of the object generated.

Alida features a so call standardized commandline provider to generically handle

data I/O from and to file and the input of derived classes in the abstract class

ALDStandardizedDataIOCmdline. It is easy to implement new providers extending this class

and thus to automatically inherit the ability to handle file I/O and derived classes. It is only

required to implement the two abstract methods

abstract public Object parse(Field field, Class<?> cl, String valueString);

abstract public String formatAsString(Object obj);

of ALDStandardizedDataIOCmdline.

The first method should instantiate an object of class cl from the valueString quite

similar to the method readData introduced above, however making no prior interpretation

regarding a file to use or derived class to return. This has already be handle by the class

ALDStandardizedDataIOCmdline prior to calling parse. Likewise the method formatAsString

should always return a textual representation of the given object as a return value. If it is

necessary to use formating information provided as part of the argument locatationString of

writeData the method

34

3.3 The processing history 35

public String formatAsString(Object obj, String formatString)

may be overridden.

As mentioned I/O managers may give provides hints to adapt their functionality. In the

case of the commandline context this is the request to read or write a history file in case the

I/O is to be performed from or to file. The method isDoHistory() may be used to inspect the

state of the manager. The standardized commandline provider adheres to this standard.

3.3 The processing history

Data processing pipelines in Alida build on the idea of operators that manipulate data objects.

According to the specification of Alida operators (see Sec. 2.2), data objects that are to be

manipulated by a certain operator will have to be stored in member variables of the operator

annotated as operator parameters with direction ’IN’ or ’INOUT’. Result data objects of an

operator will be stored in member variables annotated as parameters with direction ’OUT’ from

where the user of the operator can access the result object for further processing tasks.

Logging the complete processing history of individual objects enforces Alida to link data

objects used as inputs or resulting as outputs from operator invocations directly to the ma-

nipulating operators. These links essentially form the base to later on build the history graph

representation for each object ever seen by any of the Alida operators during a processing chain.

3.3.1 Basics of the history concept

The key for logging all operator invocations and the corresponding operator configurations during

each run of a processing pipeline is Alida’s port hash. Within this hash all objects participating

in the processing pipeline are registered. For each object a link to the relevant port of the most

recent operator invocation which manipulated or generated the object is stored as a reference to

a port object in a weak hash map. This kind of hash map only holds weak references to objects,

which allows the Java virtual machine to destroy the objects if they are not referenced somewhere

else anymore. The port hashmap allows to link input and output ports of operators as well as

data ports according to the data flow, and to lateron traceback the sequence of manipulations

for each object manipulated during the course of the processing.

The complete history of a data processing chain is only implicitly represented by the links

between the different kinds of ports. Each operator invocation is represented by an object of type

ALDOpNode which consequently needs to store its current inputs and outputs. The ALDOpNode

class defines input and output ports for input and output objects of an operator. Data ports

represent newly created data objects that were not passed to an operator as input so far. Such

objects appear, e.g., when a new data object is allocated to store the results of an operator.

35

36 3 THE PROGRAMMER’S VIEW

Altogether these ports provide the functionality to establish connections between new data and

inputs and outputs of operators.

The history of a data object is build on request traversing the connections that are stored

in Alida’s port hash. While many different objects can be linked to a single processing chain,

i.e. can be manipulated by operators during one run of various operators, a single object has

always its own individual manipulation history. This history is given by a certain path within

the manipulation graph of the complete processing chain. The starting point of the object’s

path is always the most recent operator invocation which involved manipulations of the object.

Consequently, the link to the port associated with this operator invocation is the one stored in the

port hash. Tracing back the history from this port then allows to recover all object manipulations

and build up the final history graph. Neither the programmer nor the user of an operator has

to take care of the data stored in the port hash or the correct logging of operator invocations.

Object registration and the update of port links are done automatically each time an object is

fed into an operator or taken out of an operator as result. In particular, the runOp() method of

ALDOperator takes care of all this and handles the history data management internally.

The only situation when programmers get in touch with the processing history and the port

hash is when the processing history of an object is to be created explicitly, e.g. to be saved to

disk. While this is done automatically for some Alida data types which provide read and write

methods, there is still the need for programmers to take care of this for own data types not

providing appropriate read and write routines so far.

3.3.2 Accessing history data

At any point in time during data processing the processing history of any object manipulated

is implicitly represented in the processing history graph. To access this data and transfer the

processing history from the implicit to an explicit representation, it is possible to generate this

history using the static method createGraphmlDocument() of the class ALDProcessingDAG.

This creates the processing history associated with the object in a graph data structure as

generated by XmlBeans 6. It is based on the XML schema definition of GraphML 7 with Alida

specific extensions. Although intended for writing and reading the history to or from file (see

next paragraph) in the first place, this data structure may also be used to inspect the processing

graph as constructed directly from Java.

To store the processing history in XML format, to be more precisely in GraphML format,

the class ALDOperator provides a static method to save the processing history of an object to

an XML file:

public static void writeHistory(Object obj, String filename)

6http://xmlbeans.apache.org/
7http://graphml.graphdrawing.org/

36

http://xmlbeans.apache.org/
http://graphml.graphdrawing.org/
http://xmlbeans.apache.org/
http://graphml.graphdrawing.org/

3.3 The processing history 37

These files can then be opened, e.g. with Chipory (see Appendix A), to discover details of the

analysis process. In subsequent processing chains, these histories can be read from such a file

using the following static method of ALDOperator:

public static void readHistory(Object obj, String filename)

This reads the processing history of obj from the specified file. If such a history is present, this

old history is attached to the newly created data port initially linked to this object. Note that

invoking the readHistory() method on an object will trigger the registration of the object in

the port hash if this did not happen before.

3.3.3 Different modes of processing graph construction

There are two mechanisms to influence which operator invocations are to be included or excluded

from a processing history. One is hiding of operator invocations by the user of an operator, the

other to influence the explicit construction of the processing graph to a certain extent by the

programmer of an operator. We discuss both issues in turn in the remainder of this section.

Hiding of an individual invocation of a single operator is accomplished using

runOp(HidingMode.HIDDEN) as mentioned in Section 3.1.1. This effectively excludes this in-

vocation from any processing graph for an object which indeed depends on this operator in-

vocation. Using runOp(HidingMode.HIDE CHILDREN) to invoke an operator will include this

operator in the history, but recursively hide invocations inside this operator. This hiding of

operator invocation can be ignored when creating the processing graph using the static method

createGraphmlDocument() of class ALDProcessingDAG as described in the class documentation,

e.g., for debugging purposes.

The second mechanisms to influence the processing graph is somewhat more involved.

If the mode ALDProcessingDAG.HistoryType.COMPLETE is used when constructing the his-

tory via ALDProcessingDAG.createGraphmlDocument(), for each operator invocation (i.e. each

ALDOpNode) included in the processing graph recursively all nested invocations of further oper-

ators are also included into the graph unless the invocation was hidden.

However, sometimes only the dependency as implied by the data flow should

be reflected in the processing graph. This can be accomplished by using the mode

ALDProcessingDAG.HistoryType.DATADEPENDENCIES on generation.

A third mode of generation is available, namely OPNODETYPE. In this case when constructing

the processing graph each ALDOpNode decides whether all its directly nested operator invocations

are to be considered, or only those which are connected via data dependencies. This decision is

made by the programmer and the user of the operator by appropriately setting the protected

member variable completeDAG. The same is true, if the history is not constructed for one of

these two objects, but for another object which depends on one of them.

37

38 3 THE PROGRAMMER’S VIEW

In the abstract class ALDOperator the member completeDAG is set to true, thus, a complete

history is the default. To be on the safe side the programmer of an operator may choose this

default mode with the only penalty to potentially generate history graphs with non important

operator invocations. If she or he is certain that the data dependencies of the operator yield all

(intended) operator invocations setting the variable to false may yield leaner processing histories.

3.3.4 Software version handling

Documenting the processing history for data items requires not only to log all operator invoca-

tions and their parameter settings, but also to remember the software versions of the operators.

Consequently, the method runOp() of ALDOperator retrieves upon invocation the current soft-

ware version of an operator. Indeed, where this version is queried from can be specified by the

user. Popular options are for example version control system like SVN, CVS or Git, but there

are lots of alternatives as well. Alida implements a dynamic framework allowing for flexible

runtime configuration of the software version retrieval procedure which is outlined below.

The basis for runtime configuration in Alida is the abstract class ALDVersionProvider in

package de.unihalle.informatik.Alida.version which all version provider classes have to

extend. ALDVersionProvider mainly defines the method

public String getVersion()

returning a string object, e.g., containing the software version or a another identifier or tag. The

concrete implementation of ALDVersionProvider to be used for version information retrieval

can be specified at runtime by JVM properties or environment variables (cf. Section 2.7). In

particular, use the property alida.versionprovider class to specify the desired class, e.g.:

−Dalida.versionprovider class=\
de.unihalle .informatik.Alida.version .ALDVersionProviderCmdLine

Of course, the class passed via this option needs to extend ALDVersionProvider.

If this is not the case a warning is printed to standard error and the version

provider mechanism falls back to the dummy version provider de.unihalle.informa-

tik.Alida.version.ALDVersionProviderDummy shipped with Alida. It always returns the ver-

sion identifier unknown.

Internally, a factory named ALDVersionProviderFactory extracts the desired implemen-

tation from the given environment variables or JVM properties and creates correspond-

ing objects. Note that by default a dummy version provider is initialized, i.e. the version

is always set to unknown. As default implementation Alida supplies the programmer with

class de.unihalle.informatik.Alida.version.ALDVersionProviderReleaseJar which re-

turns the Alida release identifier included in the current Alida.jar.

38

3.4 Configuring Alida 39

Alternatively, the class ALDVersionProviderCmdLine can be used. It allows reading version

data from the environment. The class extracts version data from another JVM property named

version. Hence, invoking Alida with the following options,

−Dalida.versionprovider class=\
de.unihalle .informatik.Alida.version .ALDVersionProviderCmdLine −Dversion=4711

will insert the version ID 4711 into extracted processing history files.

3.4 Configuring Alida

As described in Sec 2.7 Alida allows to configure of some of its properties. To sim-

plify such configuration tasks, the Alida library includes a flexible mechanism for run-

time configuration. In particular it provides the class ALDEnvironmentConfig in the package

de.unihalle.informatik.Alida.helpers to ease runtime configuration via the probably most

common ways of individual configuration, i.e. in terms of environment variables and JVM prop-

erties.

If for a certain requested property no configuration values are provided by any of these ways,

default settings of corresponding internal variables are left to the programmer of an operator.

In general there is no limitation for an operator to access configuration variables of its choice.

Usually they should just be properly documented in the Javadoc of the corresponding class.

The naming of environment variables and properties is not strictly regularized and left free to

the programmer of an operator. However, it is strongly recommended to adhere to the Alida

naming convention as this helps to avoid name clashes. In particular, have your variables start

with prefix ’Alida’ and let the second part be the name of the or class operator using the variable.

The third part is then the actual variable. Make sure that new variables and properties do not

collide with variables predefined in Alida which are listed in Sec 2.7.

39

40 3 THE PROGRAMMER’S VIEW

40

41

A Graph-Visualization: Chipory

Processing histories are stored in XML format using GraphML with some Alida specific exten-

sions as mentioned in Sec. 3.3. To display histories we extended Chisio8 to handle the Alida

specific extensions yielding Chipory.

A.1 Installation and invocation of Chipory

Chipory is not strictly part of Alida but supplied as an add-on at the Alida website9. A

single zip-file is provided for running Chipory on Linux systems with 32- or 64-bit as well as

on Windows system. The only difference is one system dependent jar-file as detailed in the

installation instructions provided in the zip archive. Essentially all system independent and

one appropriate system dependent jar-file have to be included into the CLASSPATH. Invoke

Chipory, e.g., by

java org.gvt.ChisioMain [directory]

The optional directory supplied as an argument denotes the path where Chipory starts to browse

when reading or writing files. If omitted the current working directory is used.

A.2 Using Chipory

Chipory is based on Chisio, a free editing and layout tool for compound or hierarchically struc-

tured graphs. In Chipory all editing functionality was conserved, however, is not required for

inspecting a processing graph in virtually all cases. Chisio offers several automatic layout al-

gorithms where Chipory chooses the Sugiyama as default as this is most adequate for the

hierarchical graph structure of processing histories. In the following we explain a tiny part of

Chisio’s functionality and the extensions supplied by Chipory. For more details on Chisio see

the User’s manual of Chisio which is included in the Chipory package and also easily found in

the web.

In Figure 18 an example processing graph extracted from an data analysis procedure imple-

mented by demo operators is shown. As already described instances of operators are depicted

as rectangles, input and output ports as ellipses, and data ports as triangles. All three types of

elements of a processing graph are implemented as Chisio nodes. A node may be selected with a

left or right mouse click. A selected node may be dragged with the left mouse button pressed to

manually adjust the layout. The size of a node representing operators is automatically adjusted

to fit all enclosed ports and nested operators.

The name of an operator is displayed in a colored area at the bottom of its rectangle. If

a operator node is uncollapsed it is shown in blue, if it is collapsed it is of dark red. This is

8http://sourceforge.net/projects/chisio
9http://www.informatik.uni-halle.de/alida

41

http://sourceforge.net/projects/chisio
http://www.informatik.uni-halle.de/alida

42 A GRAPH-VISUALIZATION: CHIPORY

Figure 18: Example processing graph.

shown in Fig. 18 where the operators ALDClusterExperiment and NormalizeExperiment have

been collapsed. A selected operator node may be collapsed or uncollapsed via its context menu

or by a left double mouse click while pressing down the shift key. Collapsing makes all enclosed

operator and data nodes invisible, thus, only the ports of a collapsed operator are shown. If

the node is uncollapsed later on enclosed nodes are made recursively visible again, until a

collapsed node is encountered. Uncollapsing additionally invokes the automatic layout algorithm,

hence, any manual layout adjustments applied before are lost. If we uncollapse the operator

ALDClusterExperiment as shown in Fig. 19 we can inspect the data processing accomplished

within this operator.

If a data port represents data read from file, the triangle is tagged by a string and colored

orange. As the data read from file normExp.data has a processing graph associated this history

is also included into the processing graph and connected by a dashed edge. This history was

written to the file normExp.ald by previous processing using Alida.

Input and output ports are generally displayed with light and dark green ellipses, respec-

tively. The single exception is the port for which the processing graph was constructed which

is depicted in yellow. In our example this is the output port summaryOfExperiments of the

operator AnalyzeExperiment.

42

A.2 Using Chipory 43

Figure 19: Screen shot of Chipory for a part of the same processing graph as shown in Fig: 18, however

the collapsed instance of the ALDClusterExpeiment has been uncollapsed.

More details for operators and ports may be inspected using the Object properties of Chisio’s

nodes. These are displayed in a separate window which for the selected node can be popped up

using the context menu. The context menu is activated by a right mouse click. Alternatively the

object properties window can be popped up by a double left mouse click.

Information displayed includes

• name of the operator or port

• type of the node, e.g. opNode for operators

• for operators the parameter values at time of invocation

• for input and output port the java class of the object as it passed into our along with the

explanatory text of this port

• for output ports the properties of the object valid when pass out of the operator if it is of

type ALDData.

43

44 A GRAPH-VISUALIZATION: CHIPORY

Figure 20: Screen shot of Chipory with details for the operators ALDClusterExperiments and

SummarizeClusters of the same operator.

In Fig. 20 this is shown for the operator s ALDClusterExperiments and the output port

SummarizeClusters of the same operator.

44

	Introduction
	The user's view
	Quick starter
	Alida operators
	Graphical user interface
	Graphical workflow editor: Grappa
	Operator Node Selection Menu
	Workbench Area
	Menubar

	Commandline user interface
	History
	Configuring Alida

	The programmer's view
	Alida operators
	Using operators
	Implementing operators: Basics
	Implementing operators: Advanced techniques
	Implementing operators: Datatypes of parameters

	Data I/O Provider
	Implementing a Swing Data I/O Provider
	Commandline Provider

	The processing history
	Basics of the history concept
	Accessing history data
	Different modes of processing graph construction
	Software version handling

	Configuring Alida

	Graph-Visualization: Chipory
	Installation and invocation of Chipory
	Using Chipory

