Martin Luther University Halle-Wittenberg
Institute of Computer Science

Pattern Recognition and Bioinformatics

User and Programmer Guide

At
b 'S

Advanced Library for
Infegrated Development of
Data Analysis Applications

— Alida —
Advanced Library for Integrated Development
of Data Analysis Applications

Version 3.0.2, April 2021

written by

The Alida Development Team

Birgit Moller Stefan Posch

Licensing information.

This manual is part of Alida, an

Advanced Library for Integrated Development of Data Analysis Applications.
Copyright (©) 20102021

This program is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License version 3! as published by the Free Software Foundation?, either
version 3 of the License, or (at your option) any later version.

You should have received a copy of the GNU General Public License along with this manual.
If not, see http://www.gnu.org/licenses/.

Fore more information on Alida visit https://alida.informatik.uni-halle.de.

Alida is a project at the Martin Luther University Halle-Wittenberg.

Institution:

Institute of Computer Science

Faculty of Natural Sciences I11

Martin Luther University Halle-Wittenberg
Von-Seckendorff-Platz 1, 06120 Halle, Germany

Contact: alida@informatik.uni-halle.de

Webpage: https://alida.informatik.uni-halle.de

"http://www.gnu.org/licenses/gpl-3.0.html
Zhttp://www.fsf.org/

http://www.gnu.org/licenses/gpl-3.0.html
http://www.fsf.org/
http://www.gnu.org/licenses/
https://alida.informatik.uni-halle.de
https://alida.informatik.uni-halle.de

CONTENTS i
Contents

1 Introduction 1

2 The User’s View 5

2.1 Quick starter 5

2.2 Alidaoperators.o e e e 7

2.3 Graphical user interface 8

2.3.1 Graphical operator runner Lo 8

2.3.2 Operator control window 9

2.4 Graphical workflow editor: Grappa L Lo 14

2.4.1 Operator node selection menu 14

2.4.2 Workbench area 15

2.4.3 Menubar and shortcuts L oL 17

2.5 Commandline user interfaceo L o 18

2.6 History L 23

2.7 Configuring Alida L 25

3 The Programmer’s View 27

3.1 Alida operators.o e e e e e 27

3.1.1 Using operators Lo e e e 27

3.1.2 TImplementing operators: Basics Lo oL 28

3.1.3 Implementing operators: Advanced techniques. 35

3.1.4 Implementing operators: Parameters 36

3.2 DataI/Oprovider 39

3.2.1 Implementing a Swing data I/O provider 40

3.2.2 Command line provider 43

3.3 XML provider for external representation 0oL 44

3.4 Automatic data type conversion 45

3.5 The processing history L L 46

CONTENTS i

3.5.1 Basics of the history concept oo 46

3.5.2 Accessing history data oL 47

3.5.3 Different modes of processing graph construction 48

3.5.4 Software version handling L. 49

3.6 Configuring Alida 50

A Graph-Visualization: Chipory 53
A.1 Installation and invocation of Chipory, 53
A2 Using Chipory i i ittt e 54

1 Introduction

Alida, which is the acronym for Advanced Library for Integrated Development of Data Analysis
Applications, is the name of our integrated concept to ease the development and application of
data analysis algorithms. For use in practice the concept is implemented in terms of a software
library. This Alida library on the one hand allows for an automatic generation of generic user
interfaces for implemented algorithms, and on the other hand subsumes the fully automatic
documentation of data analysis processes performed using functionality from the library. The
underlying core of the Alida concept is given by an interpretation of data analysis processes
as a sequence of data manipulations solely performed by functional units, called operators in
Alida. Given a generic framework for the implementation of operators in Alida, these can be
handled, i.e. configured and executed, in a standardized manner. This results in a wide range of

useful features for programmers as well as users.

The operator concept, with the operators as the central places of data manipulation and a
unified invocation procedure, allows to monitor all data manipulations taking place during a data
analysis process. Additionally, all objects ever manipulated are registered within the system and
can be linked to their manipulating operators. An automatic documention of analysis procedures
is supposed to subsume all input and output objects involved in the execution of operators, all
manipulations performed with all their relevant parameters, the flow of data, and also software
versions as used. All this information is summarized in the processing graph, which is implicitly
defined by any data analysis process. As manipulative actions can either work sequentially or in
parallel on data items, the processing graph is given by an acyclic directed graph. Its nodes are
associated with the different operations applied to the data, and the edges in between represent
the operators’ ordering and the overall flow of data and control. This representation is shown in
Fig. 1 for an example graph. As Alida allows to collect all relevant data for extracting processing
graphs due to its operator concept and the standardized invocation procedure for operators, it
allows to make the processing graph explicit without additional efforts to the programmer or
user. In particular, for each output object of any analysis process the processing graph can
subsequently be made explicit in terms of an XML representation. This allows for convenient
visualization, reconstruction and verification of results at a later point in time, and also for

long-term archiving, e.g., in databases.

While documenting analysis processes is helpful for verifying or reconstructing results at
later points in time, i.e., for long-term consistency and preservation of data analysis outcomes,
another important aspect of algorithm development is the accessibility of algorithms and tools for
programmers and users. Usually neither developers of algorithms nor users are willing or able to
spend much time on the implementation of user interfaces. Likewise a proper documentation for
users covering the functions included in a library or toolbox and their usage is often neglected.
While for API documentation of a library tools like javadoc are well-established to support

developers with this task, less technical user documentation lacks such a support.

2 1 INTRODUCTION

DetectBaseline1D

DetectLocalExtrema’D RefineLocalExtrema1D CorrectForBaseline1D

Figure 1: Example processing graph representing the history of operations for producing the data object
shown as yellow ellipse. Each operator invocation is respresented by a blue or, if the operator is temporarily
collapsed, to a violet rectangle. Light and dark green ellipses are input and output ports of operators,

gray triangles represent newly generated data objects.

Alida’s operator concept and the standardized configuration and execution procedures also
offer solutions to these problems. On the one hand Alida supports the automatic generation of
user interfaces for operators, on the other hand its interfaces render it easy to programmatically
integrate a basic user documentation for each operator. More specifically, Alida’s concept yields
a suitable fundament for automatically generating graphical and command line user interfaces
which allow to configure and execute all operators implemented in the Alida framework, provide
a basic documentation of each operator’s functionality to the user in terms of an online help,
and offer options to inspect the results of processing. While a graphical interface mainly targets
at immediate visual inspection of operator configurations and results, a command line interface

is useful, e.g., for parameter tuning or batch processing facilitated by scripts.

The framework for documentation and user interface generation is independent of program-
ming languages. Alida currently features a mature implementation in Java. This implementa-
tion is shipped with a command line tool for running operators from command line, and with
a graphical user interface based on Java Swing, which supports comfortable parameter editing
and result data inspection in a graphical framework, well-suited also for non-expert users. In
addition, the graphical editor Grappa is included which currently supports the composition of
flat workflows of operators and their partial or complete execution (see Sec. 2.4). For convenience
the configuration of operators, their execution and the inspection of results are identical to the
corresponding procedures in the graphical user interface. To inspect the automatically generated

XML documentation, the graph visualization tool Chipory is available (see Appendix A).

In general, the Alida concept enforces minimal restrictions for users and programmers,

interferring as little as possible with usual software development cycles, and resulting in an
automatic process documentation with a minimum of overhead. Alida’s concept is applicable

to any data analysis process.

Download of source code and binary bundels as well as installation instructions are available

on Alida’s web-page, https://alida.informatik.uni-halle.de.

For developing own software based on the Alida library we operate a Maven repository
server from where Alida artefacts can directly be included in your own code: https://moon.

informatik.uni-halle.de/archiva/#browse/de.unihalle.informatik.Alida

https://alida.informatik.uni-halle.de
https://moon.informatik.uni-halle.de/archiva/#browse/de.unihalle.informatik.Alida
https://moon.informatik.uni-halle.de/archiva/#browse/de.unihalle.informatik.Alida

1 INTRODUCTION

2 The User’s View

2.1 Quick starter

After installation, it is easy to explore the user interfaces automatically generated by Alida

using the shipped demo operators.

The generic graphical user interface may be invoked using the application ALDOpRunnerGUI
in the package de.unihalle.informatik.Alida.tools. It may be started from your favorite

IDE or from the command line by

java de.unihalle .informatik. Alida. tools . ALDOpRunnerGUI

as soon as the CLASSPATH is set correctly, i.e., it needs to include Alida’s jar archive and all its
dependencies. Running the above command will bring up a window displaying a package tree of
all available operators, which are mainly given by the set of demo operators shipped with Alida
(see Fig. 2). You may unfold the demo package and select the operator ALDCalcMeanArray,

which is to compute the mean of a set of numbers in a 1D array.

Once you choose to configure the operator by double-clicking on its entry, a configuration
frame pops up (Fig. 3). The operator configuration pane lists the parameters of this operator,
which are separated into required, optional and supplemental parameters (see Sec. 2.2 for more
details on the parameters of operators). If you hover over the parameter ’Compute mean free
data’, the tooltip displays the data type of the parameter and a descriptive text. Set this
parameter to true by checking the box associated with the parameter. The input data may be
supplied selecting ’Configure Native Array...’, which in the newly created window (Fig. 3,
window bottom left) allows to add or delete elements to or from the array, and to enter values.
Once you opened the configuration frame and, by this, instantiated an array, the run button
in the operator configuration frame turns to yellow to indicate that all required parameters of
ALDCalcMeanArray are properly set and the operator is ready for execution. After completion,
a result frame will show up displaying the resulting mean value. As the parameter ’Compute
mean free data’ is declared as an INOUT parameter of the operator, its value is displayed in
this result frame as well. Furthermore, the window also provides a button to once again inspect

the operator configuration used to calculate the displayed results.

The operator ALDCalcMeanArray can also be invoked from command line, without running
the graphical user interface, via the application ALDOpRunner. It expects the values of all
parameters being handed over as command line argument strings. The operator can be executed

as follows:

java de.unihalle.informatik.Alida.tools . ALDOpRunner ALDCalcMeanArray \

data="[1.0,1.5,2.2,0.4] * doMeanFree=true mean=— meanFreeData=—

2 THE USER’S VIEW

Figure 2: Screenshot of the main window of Alida’s operator runner with the demo package unfolded.

Alida - OpRunner: simply choose an operator...
File Options

Help

[ALDOperators
7 Cde
¢ CJunihalle
¢ [infarmatik
¢ alida
¢ CJdema
D AlLDArrayMean
D ALDArrayMin
D ALDArraysum
[ALDCalcMeanarray
[ALDClusterExperiment
[ALDDemoopControllable
D ALDDynamicOp
D AlLDKEmeansOp
[aloPcaop
D AlDParameterTester
D ALDTransposeMatrix
[ApplyToMatrix
[FitterExperimentalDatatp
D MatrixSum
[NormalizeExperimentalDataop

Operator Filter: | |

Selected Operator:

=none -

Apply Filter

Configure Operator... || Quit |

b ALDOperatorControlFrame: ALDCalcMeanArray 4+ _0OX

File Actions Options

Help

("Operator Configuration | Batch Mode Configuration |

Parameters (required)

Input data

Configure Native Array...

Compute mean free data [|

Verbose []

Parameters (optional)

Parameters (suppl ntal)

(0l

o

| Add Row || Delete Row || Save || Load || Clear ||

Reset || Close |

Figure 3: Screenshot of the automatically generated control window for the operator ALDCalcMeanArray.

2.2 Alida operators 7

The call will execute the operator with a 1D array of four double values as input data, and
requests to compute the mean free data array in addition to the mean of the data. Setting the
output parameters ‘'mean’ and 'meanFreeData’ to -’ requests to print the results to the standard

output, yielding the following output in the console:

meanFreeData = [—0.27500000000000013 , 0.22499999999999987 ,
0.925 , —0.8750000000000001 |

doMeanFree = true

mean = 1.2750000000000001

2.2 Alida operators

The heart of Alida’s concept are operators that implement all data analysis capabilities. Oper-
ators are the only places where data are processed and manipulated. Examples for data to be
manipulated are, e.g., experimental measurements, sets of DNA sequences, or, for image anal-
ysis, images and sets of regions comprising a segmentation result. An operator receives zero or
more input objects comprising all input data the operator is expected to work on. Operators
with zero inputs are operators which for example create a data object for given parameters or
read data from file. Further input to an operator are parameters, which configure or modify
the processing on the input data. Examples are the selection of alternative processing proce-
dures, e.g., if experimental measurements should be summarized by their mean or their median,
a mask-size of a filter to be applied to an image, or the maximal number of iterations for a
gradient descent algorithm. The distinction of an input acting as input data or as a parameter
is not clear in all cases. As an abstract example consider an operator which is to compute the
scalar product of two vectors. In this case, both vectors are most likely considered as input data.
However, if the operator is to normalize a data vector by a scalar normalizing constant, this
scaling factor may either be considered as an input or a parameter. Therefore, Alida does not
distinguish between input data and input parameters. However, parameters of an operator may

be optional, required or supplemental.

An operator produces zero or more output objects as the result of processing. An operator

with zero output objects will, e.g., write data to disk.

All input and output data are denoted as parameters in Alida. The role of a parameter is
identified by its direction, which may be input (IN) or output (OUT). In cases, where an input
object should just be passed through the operator or is destructively modified, this parameter

has the direction input and output (INOUT). An example is a vector which is modified in place.

In addition to parameters providing the input data and configuration of the operator, and
output parameters representing the results of processing, an operator may use supplemental

parameters. By definition, the setting of supplemental parameters must not influence the data

8 2 THE USER’S VIEW

processing nor the results returned as output data. Consequently, supplemental parameters are
not documented in the processing history. Examples for such parameters include flags to control

output or debugging information, and intermediate results produced by an operator.

The relevant features defined for parameters in Alida are the following:

e the direction of the parameter, which may be IN, OUT or INOUT,
e a boolean indicating whether the parameter is supplemental,

e a boolean indicating whether the parameter is required or optional (which is only inter-

preted for non-supplemental IN and INOUT parameters)

e a label, e.g., used in the graphical user interfaces,

e a textual explanation of the parameter, for example appearing in tooltips,

e a data I/O order by which parameters can be ranked for generic GUI or command line
interface generation, and

e an expert mode which, e.g., allows to hide parameters for advanced configuration from

non-expert users.

e the name of a callback function which is called if the parameter’s value is changed using the
setParameter () method of the operator; the function can, e.g., be used to automatically
update other parameter values or to even modify the set of parameters of the operator
(refer to Sec. 3.1.2 for details)

The application of operators may be nested as one operator may call one or more other
operators. At the top of this hierarchy we typically have appropriate user interfaces. Their

parameter settings are facilitated via files, GUIs, command line, or via the console.

2.3 Graphical user interface

Fasy and prompt access to new and improved data analysis algorithms is essential in many fields
of application where the development of data analysis algorithms and progress on the application
side are deeply linked to each other. Alida meets these requirements by providing a mechanism
to automatically generate handy graphical user interfaces (GUI) for all operators implemented

within its framework.

2.3.1 Graphical operator runner

The operator GUIs can easily be invoked from Alida’s graphical operator runner, named
ALDOpRunnerGUI, to be found in the package de.unihalle.informatik.Alida.tools. Upon
invocation the main window of the operator runner is shown, from where operators can be

selected for execution. A screenshot of the main window is displayed in Fig. 2.

2.3 Graphical user interface 9

The main part of the window is formed by the tree view of all available operators, hierarchi-
cally arranged due to their package structure. From this view the operators to be executed can
be chosen. An operator can be invoked by either double-clicking on its item in the tree, or by
selecting the entry with a single mouse-click and then pressing the ’Configure Operator...’
button at the bottom of the window. Note that the tree view allows to configure the set of
initially unfolded packages, i.e., visible operators. To this end the user needs to provide a file
with the set of his or her favorite operators, and set a related environment variable to the name
of that file (see Sec. 2.7 for details). In addition, the operator runner provides a search and filter
function, accessible via the entry field and filter button in the bottom part of the window. For
finding operators with specific names, type in the name of the operator or a substring of its
name, then press the button or hit the return key. Subsequently the tree will only contain the

operators matching the filter string. Note that the filter function is not case-sensitive.

To further ease operator selection and improve usability of the operator runner, Alida sup-
ports two different categories of operators. The first category of operators is mainly dedicated
to non-expert users and often targets at concrete applications, the second set additionally sub-
sumes more sophisticated operators often being very specialized and primarily intended to be
used by experts. The tree view of the operator runner window allows to switch between the first
set and a view showing all available operators by choosing the categories via the item ’Options’
followed by ’Operators to Show’ in the window’s menubar. By selecting ’Default’ the tree
view of operators is restricted to operators of the first category, while selecting >A11’ renders all
available operators to be displayed. Note that the menubar also grants access to Alida’s online

help and the current version of Alida being used.

2.3.2 Operator control window

Once an operator has been selected, the corresponding operator control window pops up (Fig. 4).
It allows for configuration and execution of the operator. The window is subdivided into four
parts, i.e., it consists of a menubar, a control section with a set of buttons at the bottom, a status
bar, and the configuration section with different tabs typically occupying the largest fraction of

the window.

Configuration section. For most operators there are two tabs available in the configuration
section. The first one, denoted ’Operator Configuration’, subsumes graphical elements for
handy configuration of the operator’s parameters. As operator parameters may have different
data types, and each data type requires individual I/O handling, with each data type a spe-
cific graphical element is associated. For example, for inserting values for native parameters of
type int or double a simple text field is displayed, while for arrays and collections buttons are
shown which allow to open editable tables. The demo operator MatrixSum defines the two in-
put parameters ’Input matrix’ of type Double[] [] and ’Summarize mode’. The latter one is

linked to an enumeration class, and a corresponding combobox for selecting one of the available

10 2 THE USER’S VIEW

ALDOperatorControlFrame: MatrixSum + - OX
File Actions oOptions Help

i Operator Configuration | Batch Mode Configuration |

Parameters (required)

Input matrix| Configure Native Array...

Summarize mode

Parameters (supplemental)

Verbose []

4] i | IC

‘ Run | | Close |

| Display Results

Status: Operator is ready to run.

Figure 4: Automatically generated control window for the Alida demo operator MatrixSum.

enumeration elements is shown. As can be seen from the screenshot in Fig. 4, the configuration
section is further subdivided into required and supplemental parameters. Also optional parame-
ters may appear there, however, the demo operator in this example does not define any optional

parameters, thus, the corresponding section is missing in this case.

The second tab, denoted *Batch Mode Configuration’, provides access to Alida’s built-in
support for batch processing. The basic idea of the batch mode is to automatically execute an
operator multiple times with different input values for a certain parameter. Consequently, on the
tab a single input parameter of the operator can be selected and configured for batch processing.
In Fig. 5 the tab for batch mode configuration of the operator ALDArrayMean is depicted. The
operator expects as input an array of type Double[]. After activating the batch mode via the
corresponding checkbox, it is possible to configure this parameter. In this case the user has to

provide an array of type Double[] [] as input for the operator® (see Fig. 5).

During batch processing the operator is run multiple times, each time processing a single
row of the input array (also refer to subsequent paragraph). The result of such a batch procedure
is given by a summary of the values of selected operator output parameters. The parameters of
interest have to be selected on the batch tab as well, and upon termination of the batch run the
values of the different runs are appropriately summarized (Fig. 6). Note that not all operators
allow batch processing. For these operators the batch mode tab is not shown. The batch mode
support in Alida is in an early state, and currently there is batch support only for very few

input and output parameter data types.

3Note that if the batch mode is activated for a certain parameter, it is not possible to configure the parameter

via the ’Operator Configuration’ tab.

10

2.3 Graphical user interface 11

B aLDOperatorControlFrame: ALDArrayMean + _0OX
File Actions Options Help

[Operator Configuration | Batch Mode Configuration |

Activate Batch Mode

Batch mode input parameters: Batch mode output parameters:

Input 1D array | Configure Native Array... |

Summarizing scalar

= |D|Sp|aprgu|tS|| ;_un | | cmse |

A B & D
1 2 = 4
=] 5] 7 8
9 10 11 12
13 14 15 16
| Add Column || Add Row || Delete Last Column || Delete Row H Save || Load || Clear || Close |

Figure 5: Screenshot of the tab for batch configuration of the operator ALDArrayMean. As the operator
expects as input a 1D array of type Double[] the user has to provide an array of type Double[] [] as
batch mode input via an appropriate configuration window (visible at the bottom of this figure).

] Operator Results for ALDArrayMean

Summarizing scalar| Show data...

<) Result data (Double[]) for parameter <Summarizingsci *+ - 0O X

2.5
6.5
10.5
14.5

| Options... H Save || Clear || Close ‘

Figure 6: Window summarizing the batch processing results for the operator ALDArrayMean. Each entry
of the result array refers to the mean of the elements in one row of the batch mode input array (Fig. 5).

Control section. If an operator has been properly configured, either for normal execution or
for batch processing, it can be invoked from the buttons in the control section of the window.
By default, this section contains a button labeled >Close’ to close the operator control window,
a button ’Display Results’ (Fig. 5), however, which is deactivated until results are actually
available, and of course a button labeled ’Run’ to run the operator. Once the run button is
colored yellow, the operator is ready for execution. If it has red color, the configuration is not
yet completed. A green color indicates that the operator was already executed with the given set
of parameters and cannot be run again unless the configuration is changed. When the run button

is clicked, Alida executes the operator. While the operator is running the button takes a blue

11

12 2 THE USER’S VIEW

Operator Results for MatrixSum + - 0OX
sums | Show data...

Show Input Parameters || Quit |

Result data (Double[]) for parameter <sums>

58.0

Options... || Save || Clear || Close |

Figure 7: Result window for the demo operator MatrixSum as displayed upon termination. On the left, the
actual result window is shown, while on the right the result for the operator’s output parameter ’sums’ is
displayed, which here is the set of row-wise sums of the two-dimensional input array. This window pops
up by clicking the ’Show data...’ button in the result frame.

color. Upon termination its color switches to green, and a result frame is displayed summarizing

the results and also providing direct access to the input parameters (Fig. 7).

Besides generic execution of operators in terms of invoking the operator and displaying its
results, Alida also supports interactive operator execution. Interactive operators allow for user
interaction in terms of at least pausing, resuming or interrupting the data processing. Addi-
tionally, interactive operators may also support step-wise data processing where the operator
is automatically paused after a specified number of steps. The notion of a ’step’ in this case
is left to the programmer of the individual operator and may vary between operators. In most
cases, however, step-wise execution will be supported by interactive operators performing sev-
eral iterations during execution. Each iteration will then be associated with one execution step.
For interactive operators additional control elements are displayed in the control section of the

operator control window (Fig 8).

For all interactive operators two additional buttons labeled ’Pause’ and ’Stop’ are dis-
played. The execution of an operator has always to be invoked pressing the >Run’ button. If the
’Pause’ button is pressed while the execution is ongoing, the operator will be paused. Note,
however, that this does not imply that the operator immediately interrupts its execution, but
rather proceeds until reaching the next breakpoint predefined by the programmer. It may even
happen that the operator terminates its execution instead of just pausing it. The latter will be
the case if the last breakpoint had been past before the pause command was triggered by the
user. Common breakpoints of operators are for example the end of an iteration in iterative pro-
cedures or the termination of subroutines. In general, however, the definition of a breakpoint is
left to the programmer of an operator and varies between operators. Pressing the >Stop’ button

during execution triggers a similar behaviour. The operator will proceed with its execution until

12

2.3 Graphical user interface 13

ALDOperatorControlFrame: ALDDemoOpControllable + - 0X
File Actions Options Help

| Operator Configuration | Batch Mode Configuration |

Parameters (supplemental)

Verbose []
S
[]Step-wise execution Step size =

Status: Ready

Figure 8: Control window for an operator supporting interactive execution. Note the set of additional

control elements at the bottom of the window.

the next predefined termination point is reached, then does some clean-up and finally presents
intermediate results to the user. Termination points may be identical to breakpoints, however,

this is not mandatory.

If an interactive operator also supports step-wise execution the control windows displays
additional graphical elements to activate the step-wise mode, specify a step size and to trigger
execution of subsequent steps. After activating ’Step-wise execution’ and specifying the step
size such an operator can be invoked by pressing the ’Next Step’ button. The operator then
starts its execution and will automatically pause after the given number of steps. Subsequently
the user needs to resume execution by clicking the button *Next Step’ again. During step-wise

execution the operator can also directly be terminated by pressing the >Stop’ button.

Menubar. The menubar of the operator control window allows for additional actions. From
the menu item ’File’ it is possible to save the current operator configuration to a file on disk
in XML format, and also to load a configuration from such a file. Note that the batch mode
configuration is currently not included in this file. The ’>Actions’ menu offers the possibility to
reset the operator parameters to their default values, and the item ’Options’ provides access to
configuration options for the appearance of the operator control window, e.g., to switch between

different modes of parameter display and to configure the status bar.

Besides defining required, optional and supplemental parameters, Alida supports differ-
ent modes for an operator parameter. In detail, a parameter can be declared as STANDARD or
ADVANCED. While standard parameters are assumed to be the most important parameters of an
operator, advanced parameters allow for more sophisticated configuration, however, can most
of the time be ignored by non-expert users. Consequently, the parameter view can configured
to show all parameters of an operator or to just display the default set of most important

parameters which is the default setting.

The item ’Help’ in the menubar again grants access to Alida’s online help.

13

14 2 THE USER’S VIEW

Status bar. The status bar at the bottom of each operator control frame displays the current
status of the operator. It tells the user if the operator is unconfigured, readily configured to be
executed, or if it has been executed and result data is available. In addition, if the underlying
operator is triggering progress events during execution (see Sec. 3.1.3 for more details), these
can also be displayed in the status bar. The item ’Show Progress Messages’ in the ’Options’

menu of the menubar allows to enable or disable the display of these messages.

2.4 Graphical workflow editor: Grappa

Most of the time complex data analysis tasks cannot be solved by only applying a single operator
to the data. Rather, selections of various operators need to be combined into more sophisticated
workflows to extract desired result data. Alida inherently supports the development of such
workflows. On the programmatic level it provides extensions of the operator concept towards
workflow objects, and on the user side it includes Grappa, the Graphical Programming Editor
for Alida. Grappa allows for designing and manipulating workflows via graph edit operations,

hence, offers an intuitive interface and large flexibility for developing workflows.

A workflow in Alida is defined as a graph data structure. Each node of the graph represents
an Alida operator, while edges between different nodes encode the flow of data and control.
Each node owns a selection of input and output ports which are associated with the operator’s
parameters. Consequently, edges are directed, i.e., an edge always connects an output port of
one operator node with an input port of another. Grappa visualizes such workflow graphs and

supports manual editing, manipulation, and also workflow execution and analysis of results.

Grappa can be started using the following command:

java de.unihalle .informatik.Alida. tools . ALDGrappaRunner

Figure 9 shows a screenshot of Grappa’s main window. It is basically divided into two
sections. On the left, the node selection menu is visible, while on the right the workbench area is
located. In addition, the window features a menubar for configuring Grappa, loading and saving
workflows, and accessing the online help. At the bottom of the window a panel displaying status

and progress messages is available.

2.4.1 Operator node selection menu

In the selection menu on the left of Grappa’s main window all Alida operators found in the
classpath upon initialization are listed as potential nodes for Grappa workflows. In analogy to
the graphical user interface (see Sec. 2.3) they are arranged in a hierarchical ordering according
to their package structure. The different package subtrees can be folded and unfolded by double-

clicking on a folder’s name in the selection tree, or by single-clicking on the circle displayed left to

14

2.4 Graphical workflow editor: Grappa

15

(£} Grappa
File OperatorLevel Workflow Help
op-Filter: | Untitled |
=1 ALDOperators Matrixsum ALDArrayMin H‘
¢ Clde "%—l —
Chput ma ¢Jhput 1D A 2 Operator Results for ALDArrayMin
CJunihalle & Summariz. sums (5. tVerhﬂse summariz. "I" =l '_1 B -
3 informatik e ~ f Summarizing scalar 9.0 ‘
¢ CJAlida /
¢ C1demo | [#/ operator Results for ALDArrayMean
e ALDArrayMean
[ALDArrayMean e Summarizing scalar 15.0
[} ALDArrayMin ¢ %':rfnlsg- Summariz.. b ¢
[ALbArraySum / t | -
[ALDCalcMeantrray | ALDCalcMeanArray ‘ Show Input Parameters H Quit |
[ALDClusterExperiment ﬁ put da... Mean val.. (l:
[ALDDemaOpControllable Verbose Mean fre...) < Il [v
Compute .. Compute
[ALDKmeansop
[ALoPcaop
[ALDParameterTester
[ALDTransposeMatrix (2} ALDOp 9
[} ApplyToMatrix File View Actions Help
[FilterExperimentalDatao, Operator Configuration |
[matrixsum —————————— Parameters (required) ——
[normalizeExperimentalDg
Input matrix | Configure Native Array...
i g D G
[Untitled] running workflow... | R TR e—
[Untitled] "ALDCalcMeanArray” - Starting to calculate mean free data... PP
[Untitled] "ALDCaleMeanarray’ - Starting to calculate mean free data... | yerpose []
[Untitled] "ALDArrayMin® - Starting to compute minimum of a matrix...
o [Array data (Doub p a =}
A g C
.0 2.0 3.0
4.0 5.0 6.0
7.0 8.0 9.0

| Addcolumn || AddRow || DeleteLast Column || Delete Row || save || Load || clear || close |‘

Figure 9: Screenshot of the graphical editor Grappa. In addition to the editor’s main window (top left) two
configuration windows for data input (bottom) and two operator result frames (top right) are displayed.

the folder icon. Above the tree view an operator filter is available which allows to select operators
according to their names. For filtering, enter a substring into the text field and press the return
key. As for the graphical user interface, Alida allows to customize the set of unfolded operators
upon start-up to the user’s needs (refer to Sec. 2.7 for details). Operator nodes can be added to
a workflow by double-clicking on the operator name. A new operator node is then instantiated
in the top left corner of the corresponding workflow tab, i.e., the active workflow (see below).
Alternatively, an operator can be selected by clicking once on its name and afterwards clicking

once on the position in the workflow tab where the new operator node should be positioned.

2.4.2 Workbench area

Workflows can be designed and executed in the workbench area on the right of the main window.
It allows for instantiating multiple workflows in parallel where each workflow is linked to an
individual tab of the workbench panel. A new workflow tab can be added via the item ’New’
in the context menu of the workbench. The context menu is displayed upon right-click on an
empty location of the workbench area. Upon selecting the item ’New’ a new tab is added to
the workbench panel. By default, the name of the new workflow is "Untitled’, but it can easily
be renamed via the corresponding item ’Rename’ in the context menu. Via this menu it is also
possible to close a workflow tab if no longer required. Note that its contents are lost if not saved
before! The currently selected tab in the workbench contains the active workflow which can be

edited and where new operator nodes can be added as outlined in the previous subsection.

15

16 2 THE USER’S VIEW

Operator nodes. For each operator selected via the selection menu, a node in terms of a
rectangle is added to the currently active workflow. Above the rectangle the name of the operator
is displayed, while on its left and right side the operator’s input and output ports are shown as
circles and squares. Circles are associated with operator parameters of directions IN or OUT, while
squares refer to parameters with direction INOUT (Sec. 3.1.2). The latter ports are duplicated
on both sides of the node. The colors of the circles indicate their type. Blue circles refer to
required parameters, yellow circles are associated with optional parameters, and red circles are
linked to supplemental parameters. To the left and right of the ports, respectively, the name of
the corresponding parameters are written. Once operator nodes have been added to a workflow,

they can easily be dragged and repositioned as well as resized via intuitive mouse actions.

For each operator node a context menu can be popped up by clicking the node with the
right mouse button. From this menu it is possible to delete the node (item ’Remove’), or to
configure the view via the item ’0Options’. It, e.g., allows to select the set of operator parameter
ports to be shown, i.e. either all parameters or just the subset of non-expert parameters. From

the context menu of a node it is also possible to configure the node (item ’Configure?).

Node configuration and states. On selecting the item for configuration, a window is dis-
played which allows to enter parameter values (for an example, see the two windows at the
bottom of Fig. 9). The window is automatically generated, i.e., actually the same mechanisms
as for executing operators via the graphical operator runner are applied (cf. Sec. 2.3). Accord-
ingly, the configuration window is identical to the corresponding operator control window and

shares the same layout, except for the control buttons and the batch mode tab which are missing.

Operator parameters for a certain node can directly be specified via the configuration win-
dow, they can be loaded from a proper parameter file in XML format?, or they can be configured
by dragging edges between ports of different nodes with the mouse to propagate output data
from one node as input data to another. To add an edge, move the mouse over an output port of
a node until the port is surrounded by a green square, then press the left mouse button. Subse-
quently, while keeping the button pressed, move the mouse to the desired input port of another
node. Once a green rectangle shows up around the target input port, release the button. Note
that on dragging edges Grappa performs type and validity checks. Only ports being associated
with compatible parameter data types can be linked to each other. Two parameter data types
are compatible if they are either equal, the target data type is a super class of the source data
type, or if Alida has access to a converter allowing to transform the source data type into the
target type (refer to Sec. 3.4 for details). Also edges are forbidden that would induce cycles into
the workflow graph.

Nodes in a workflow can have different states indicated by the color of their border. Red

4The parameters of an operator can be saved to such a file via the corresponding options in operator control
windows as displayed by the graphical operator runner. Also the node configuration windows in Grappa provide

an option to save the current parameter settings of the node.

16

2.4 Graphical workflow editor: Grappa 17

framed nodes are not ready for execution, i.e., their configuration is not complete. If a node
is readily configured and can directly be executed, its border has a yellow color, while nodes
that are configured, however, require additional input data from preceeding operator nodes have
an orange color. Prior to executing these orange nodes it is, thus, necessary to execute the
preceeding nodes first. Note that Grappa takes care of such dependencies, i.e., automatically
executes nodes first from which result data is required for proper workflow or node execution.
The state of a node is updated by Grappa in real-time, i.e., each change in its configuration

directly invokes internal checkings and may result in a change of the node’s color.

Workflow execution. Grappa offers various modes for executing a complete workflow or
parts of it. From the context menu of the workbench the item ’Run’ is available which executes
the complete workflow, i.e., all nodes currently present on the tab. From the context menu of a
single node and its Run. ..’ item also the whole workflow can be executed (item ’Workflow’).
Alternatively, via the item ’Nodes from here’ it is possible to only execute the nodes of the
workflow subgraph for which the current node is the root (of course considering required depen-
dencies). Finally, the item ’Node’ allows for running the workflow until the node in question.
As mentioned before, Grappa automatically takes care of resolving dependencies, i.e., upon ex-
ecuting a node all nodes having a yellow or orange border and being predecessors of the node
in question are also executed. Note that the execution of a workflow will fail if one of the nodes

is still colored red, or if a node does not produce proper output data required by others.

After successful execution of the workflow or a subset of nodes, the colors of the correspond-
ing nodes change to green indicating that result data are available. For all terminal nodes having
no successor the result frames are automatically opened (see Fig. 9 top right). For all other nodes
the result data can graphically be examined via the nodes’ context menus from which the result
windows can manually be opened. Once a node has been executed and is colored in green, it is
not possible to re-execute the node until its configuration, or at least the configuration of one of

its preceeding nodes, was changed.

2.4.3 Menubar and shortcuts

The Grappa main window features a menubar offering quick access to the basic functions of

Grappa and some additional convenience functionality simplifying the work with the editor.

Via the menu item ’File’ workflows can be saved to and read from disk. By saving a
workflow currently two files are written to disk, one containing the information about the nodes
and their configuration, and one storing graphical information regarding the current workflow
layout. Both are required to load a workflow again. The first one has the extension ’.awf’, the

latter one the extension ’.awf.gui’.

Via the menu item ’Workflow’ new workflows can be added and existing ones be renamed,

closed, executed or interrupted. As outlined in Sec. 2.3, Alida supports two categories of opera-

17

18 2 THE USER’S VIEW

tors, i.e. operators mainly dedicated to direct application by non-expert users and operators for
special tasks and expert usage. Via the item ’Options’ the menubar allows to switch the view
in the selection menu between both categories. Also progress messages triggered by the operator
node during execution and optionally shown in the status panel can be enabled or disabled via
this menu. Finally, the menu item ’Help’ grants access to Alida’s online help system where

information about its functionality and descriptions of the operators can be found.

The most important functions for workflow and node handling in Grappa are also accessible

via keyboard shortcuts. Currently the following shortcuts are implemented:

e Ctrl-N — open a new, empty workflow in a new tab

e Ctrl-U — rename the active workflow

e Ctrl-W — close the active workflow

e Ctrl-S — save the active workflow to disk

e Ctrl-L — load a workflow from disk into a new tab

e Ctrl-A — run the complete workflow

e Ctrl-P — open the configuration frames of all selected nodes in the active workflow
e Ctrl-X — delete all selected nodes in the active workflow

2.5 Commandline user interface

The command line user interface of Alida allows to invoke all Alida operators properly an-
notated to grant generic execution. In the following examples the operators MatrixSum and
ApplyToMatrix, included as demo operators in Alida, are used to explain the usage and fea-

tures of this user interface.

Basics. You may invoke an operator by calling the command line operator runner:

java de.unihalle .informatik.Alida.tools . ALDOpRunner [—u] [—v] [-n] [—1] [—s] \

<classname> {parametername=valuestring}«

It expects as arguments the name of the operator class to be executed and its parameters.

The following options are available:

e -u / --usage — prints the help

e -v / ——verbose — prints additional information during operator execution

18

2.5 Commandline user interface 19

-n / --donotrun — does not execute the operator, but rather prints its short

documentation (if available) and the parameters

-r / --useRegEx — interprets the classname as a regular expression

-s / -—showProgress — enables the display of progress messages on console

during operator execution

e —-noDefaultHistory — if this flag is given, no history is read or written for input

and output parameters contrarily to Alida’s standard behaviour.

The operator MatrixSum for row-wise summation of the elements within a matrix can be called

as follows:

java de.unihalle .informatik.Alida. tools . ALDOpRunner MatrixSum \
matrix="[[1,2,3],[4,5,6]] ’ sums=—

which returns as result on standard output

sums = [6.0,15.0]

Parameter values are specified as name=value pairs. Alida’s syntax for 2D array should be
self-explanatory from this example. As the mode of summation is not supplied as a parameter

its default is used.

The name of operators need not to be fully qualified if they remain unambiguous. There
are further options for abbreviation as well as regular expressions, see the help message of
ALDOpRunner.

Note, that the command

java de.unihalle .informatik.Alida. tools . ALDOpRunner MatrixSum matrix="[[1,2,3],[4,5,6]]’

will return no output at all as the command line user interface returns only those output pa-
rameters which have been requested by the user. This is facilitated providing a dummy value

for an output parameter, which is - in the example.

The enumeration defined in MatrixSum for summarizeMode is set in the next example. If
a wrong value for an enumeration is given the ALDOpRunner prints a list of admissible values.
The example also demonstrates redirection of output to a file, sums.out in this case, which is

the standard in Alida if the value of an output parameter is preceded with a ’@’:

java de.unihalle .informatik. Alida. tools . ALDOpRunner MatrixSum matrix="[[1,2,3],[4,5,6]]’

summarizeMode=COLUMN sums=Qsums.out

19

20 2 THE USER’S VIEW

Input can be read from file as well:

java de.unihalle .informatik.Alida.tools . ALDOpRunner MatrixSum matrix=Qdata sums=—

where the file data contains the string defining the matrix, e.g., [[1,2,3]1,[4,5,6]]

Operators as parameters The demo operator ApplyToMatrix takes as one param-
eter another operator. In this case this operator needs to extend the abstract class
ALDSummarizeArrayOp. When invoking the ApplyToMatrix operator from command line
we thus have to handled derived classes as value for parameters. In the graphical user interface
Alida features a combo box where we may choose from. In the command line interface Alida
allows to prefix the value of a parameter with a derived class to be passed to the operator. This
is necessary as Alida has, of course, no way to itself decide if and which derived class is to be
used. Alida’s syntax is to enclose the class name in a dollar sign and a colon. This mechanism
is not confined to operators as a parameter (of another operator), but applies to all classes for
which data I/O is handle in a standardized way (see Sec. 3.2.2). The value of the parameter
behind the specified derived class is empty in this example as the operator ALDArrayMean can
be instantiated without arguments. As evident in the following example, abbreviations of the

fully qualified class name are accepted as long as they are unambiguous.

java de.unihalle .informatik.Alida. tools . ALDOpRunner ApplyToMatrix \
matrix="[[1,2,3],[4,5,6]] "’ \
summarizeMode=ROW \
summarizeOp="$ALDArrayMean:’ \

summaries——

results in

summaries = [2.0,5.0]

In case the operator, in this case ALDArrayMean, is to be instantiate with additional argu-

ments, this may be accomplished in curly brackets behind the specification of the derived class:

java de.unihalle.informatik.Alida. tools . ALDOpRunner ApplyToMatrix \
matrix="[[1,2,3],[4,5,6]] \
summarizeMode=ROW \
summarizeOp="$ALDArrayMean:{verbose=true}’ \

summaries—=—

The result is the same in this case, as the standard verbose flag of all operators has no effect in
this case. The syntax to pass arguments for instantiation to an operator as a parameter is iden-
tical to the syntax of parameterized classes and is described in the next paragraph. If arguments

are to be passed to an operator without using a derived class this may be accomplished using

20

2.5 Commandline user interface 21

only curly brackets, again identical to parameterized classes. In this example this would yield

java de.unihalle.informatik.Alida. tools . ALDOpRunner ApplyToMatrix \
matrix="[[1,2,3],[4,5,6]] "’ \
summarizeMode=ROW \
summarizeOp="{verbose=true}’ \

summaries=—

which however fails, as the ALDSummarizeArrayOp is abstract.

Note, that a dervided class is only available in the command line interface if it is program-

matically annoted with @ALDDerivedClass, see Sec. 3.1.3.

ALDOpRunner may be persuaded to show all operators derived from ALDSummarizeArrayOp

and known within the user interface if we enter an invalid class name:

java de.unihalle .informatik. Alida. tools . ALDOpRunner ApplyToMatrix \
matrix="[[1,2,3],[4,5,6]] * \
summarizeMode=ROW summarizeOp="$dd:” \

summaries=—

yields

ALDStandardizedDatalOCmdline::readData found 0 derived classes matching <dd>
derived classes available :
de.unihalle .informatik. Alida.demo.ALDArrayMean
de.unihalle .informatik. Alida.demo.ALDArrayMin
de.unihalle .informatik. Alida.demo.ALDArraySum

Supplemental parameters are handled like other parameters

java de.unihalle .informatik. Alida. tools . ALDOpRunner ApplyToMatrix \
matrix="[[1,2,3],[4,5,6]] \
summarizeMode=COLUMN \
summarizeOp="$ALDArrayMin:{}’ \
summaries=— \
returnElapsed Time=true \

elapsedTime=—

gives

summaries = [1.0,2.0,3.0]

elapsedTime = 4

21

22 2 THE USER’S VIEW

Parameterized classes Alida supports so called parameterized classes. A parameterized class
is essentially just an ordinary class where however some member fields have been declared to be
required for an object of this class to be properly instantiated by Alida. These member fields
resemble quite some analogy to parameters of operators and share some properties (see Sec. 3.1.3
for details). The syntax for parameterized classes is a comma separated list of name=value pairs
enclosed in curly brackets where names refer to annotated member variables of the parameterized
class. This is shown for the class ExperimentalDatalD which holds an 1D array of experimental

data and descriptive text as annotated member fields.

java de.unihalle.informatik.Alida. tools . ALDOpRunner SmoothDatalD \
experiment="{ baselineCorrected=false , \
description="my_experiment”, \
data =[1.0,2.0,2.2,3.3,2.0,1.0,1.0,1.0,1.0,2.0,3.3,2.0]}" \
smoothingMethod=MEAN width=3 \

smoothedExperiment=—

yields

smoothedExperiment = { baselineCorrected=false ,
data =[1.5,1.73,2.5,2.5,2.1,1.33,1.0,1.0,1.33,2.10,2.43,2.65]

timeResolution=NaN , description="my._experiment” (smoothed) }

If a class derived from ExperimentalDatalD was to be supplied to the operator, the curly
brackets can be prefixed by a derive class definition starting with a dollar sign and ending with

a colon as shown for the summarizing operators above.

22

2.6 History 23

Advanced examples

The following example shows, that the standard sytnax used for file I/O may be nested

java de.unihalle .informatik.Alida. tools . ALDOpRunner SmoothDatalD \
experiment="{data=Q@myexp.data,description="Demo_experiment” }" \

smoothedExperiment=@QExpl—smooth.txt

Here, the parameter description of the parametrized class ExperimentalData is directly parsed
from the string given on the command line, while the parameter data is parsed from the con-
tent of the file myexp.data. The resulting smoothedExperiment=@Expl is written to the file
Expl-smooth.txt.

Likewise, if an output parameter is a parametrized class, as in this example, a subset of its

parameters may be written to file, a part to standard output:

java de.unihalle .informatik.Alida. tools . ALDOpRunner SmoothDatalD \

experiment="{data=@myexp.data,description="Demo_experiment” }" \

smoothedExperiment="{data=Qmyexp—smooth.data,description=—}’

will return

smoothedExperiment = { data written using @myexp—smooth.data ,

description="Demo_experiment” (smoothed) }

which indicates that the data of the smoothed experiment have been written to the file

@myexp-smooth.data as requested.

2.6 History

One of the main features of Alida is the capability of automatically documenting data processing
pipelines. The operator concept allows for automatically logging all data manipulations, which
can subsequently be used to convert the processing history into a directed graph data structure,

denoted processing graph in the following.

The Alida operator concept defines operators as the only places where data are processed
and manipulated. Each invocation of an operator is associated with a certain configuration of
the operator, defined by the values of its IN and INOUT parameters. A data analysis pipeline
usually consists of a set of different operators that are applied to incoming data and produce
result data. The order in which the operators work on the data depends on the specific pipeline
as well as on the input data. The invocation of operators can be of pure sequential nature
or subsume parallel processing steps. In addition, a nested application of operators is possible.
Given these principles, each analysis pipeline and its data flow may be interpreted and visualized

as a directed acyclic graph (cf. Fig. 10 for an example).

The processing graph is stored in XML format in a file accompanying the actual data

23

24 2 THE USER’S VIEW

baseline

DetectBaseline1D

&

SmoothData1D

refinedExtrema’

correctedExtrema "

RefineLocalExtrema1D

CorrectForBaseline1D

correctedExtrema

Workflow1D

Figure 10: A processing graph: the directed acyclic graph represents the application of nested operators.
Calls to operators are depicted as rectangles, input and output ports as ellipses filled in light or dark
green, respectively. The yellow ellipse indicates the result data object to which this processing graph is
linked to. The triangles relate to newly generated data objects which are colored in grey unless the data

object was read from file. In this case the triangle is colored orange.

object file. The format basically relies on GraphML> with some Alida specific extensions. If the
history is stored externally when a data object is written to disk depends in general on the data
type. However, when invoking operators from the command line user interface, most Alida data
types will write a history if output of a parameter is redirected to a file. Alida uses the extension
> .ald’ for an Alida processing graph file. The same is true when reading data. L.e., in general
it depends on the data type if a history is read from file, if existing. The command line user

interface will do this in most cases.

Note, the identity of data is not preserved in the processing history across file boundaries. If
two (or more) input data for the current top level operator are loaded from the same file, both
will nevertheless be displayed as different data nodes in the history. The reason is that object
identity is not — and maybe even cannot — be checked from the processing history of former

operations.

A processing graph basically consists of operator and data nodes which are connected by
edges indicating the flow of data, as can be seen from Fig. 10. The figure shows a screenshot of
Chipory which is a graph visualization tool derived from Chisio (see Appendix A for details).

Within the processing graph each operator node, which is linked to the invocation of a specific

5GraphML website, http://graphml.graphdrawing.org/

24

http://graphml.graphdrawing.org/

2.7 Configuring Alida 25

operator, is depicted as a rectangle with the operator’s classname in the bottom line. For each
input and output parameter object the operator node features input and output ports which
may be conceived as the entry or exit points of data into and out of the operator. These ports are
depicted as filled ellipses in light green (input ports) and dark green (output ports), respectively.
Each input port has exactly one incoming edge, while an output port may be connected to
multiple target ports, depending on where the data is passed to. Each port of an operator has

an individual name indicating the input or output object associated with the port.

In addition to operator nodes and their ports there are also data nodes in the graph, cor-
responding to the creation of new data objects, e.g., when data is read from file, cloned or
generated from scratch. These are depicted as triangles filled in light grey in most cases. If data
is read from file, the triangle is tagged by a string and colored orange. If in addition a processing
graph of a former analysis procedure was read, this history is also included into the processing

graph and connected by a dashed edge (see top left part of Fig. 10).

2.7 Configuring Alida

Sometimes it is desirable to configure some properties of Alida or the general behavior of specific
operators at runtime, e.g., to specify initial files or directories where operators should work on.

Alida basically supports two different ways for user specific configuration:

a) environment variables

b) properties of the Java virtual machine specified with the

option ’-Dproperty=value’ upon invocation of the JVM

This order already reflects the priority of the options, i.e., environment variables overwrite JVM
properties. If for a certain requested property no configuration values are provided by any of
these ways, default settings are used. Some variables of general interest are used by Alida
and are summarized below. Further variables may be introduced, e.g., by additional operators

implemented in the framework.

In the following list, both the environment variable and the name of the property are given

in the form of property / environment variable:

alida.oprunner.level / ALIDA_OPRUNNER_LEVEL

Used by the graphical operator runner ALDOpRunnerGUI and Grappa, i.e., the application
ALDGrappaRunner, to configure which set of operators is to be displayed initially in the
selection menu. Possible options are either all available operators (’standard’) or just the

ones categorized as being easier to use (application’). The default is ’application’.

25

26 2 THE USER’S VIEW

alida.oprunner.favoriteops / ALIDA_OPRUNNER_FAVORITEOPS Holds a colon separated list
of filenames. Each file contains lines of fully qualified operator names which will be unfolded
in the operator selection window when starting the graphical user interface or Grappa (see
Sec. 2.3 and 2.4). The default is ${user.home}/.alida/favoriteops.

alida.oprunner.operatorpath / ALIDA_OPRUNNER_OPERATORPATH Here a colon separated
list of packages may be specified. Each package and all its sub-packages are searched
for operators in the classpath. These operators are incorporated in the tree of available
operators in the graphical user interface and in Grappa. This feature is useful to incorporate

operators which are not compiled, but just added within a jar-archive.

alida.oprunner.workflowpath / ALIDA_OPRUNNER_WORKFLOWPATH

Here a colon separated list of directories may be specified each of which is searched for work-
flows saved in a file. These workflows are incorporated in the tree of available operators in

the graphical user interface in Grappa. The default is ${user.home}/.alida/workflows.
alida.versionprovider_class / ALIDA_VERSIONPROVIDER_CLASS
Implementation of de.unihalle.informatik.Alida.ALDVersionProvider to be used for
version information retrieval in process documentation (Sec. 3.5.4).
alida.version / —

Only available as JVM property, this variable is used by ALDVersionProviderCmdLine
to discover the software version to be stored in the history. The class
AlDVersionProviderCmdLine implements the ALDVersionProvider interface and

gets the version to be used from the JVM.

26

27

3 The Programmer’s View

3.1 Alida operators
3.1.1 Using operators

To use an operator an object of the operator class needs to be instantiated, and input data as
well as parameters have to be set for this object. Subsequently, the operator can be invoked
using the method runOp (). After return from that routine the results can be retrieved from the

operator.

Important note: Do no invoke an operator directly by its operate() method as this will
prevent the processing history from being constructed. Anyway, this only would be feasible from

within the package of the operator as the abstract method operate() is declared protected.

An example of how to use an operator is given in Fig. 11. First, a new instance of the
operator is created (line 1), and subsequently further input parameters are set (lines 2 and
3). If all required input parameters have been assigned for the operator object, it can be
invoked calling its runOp () method (line 4). Upon invocation of runOp() the validity of input
parameters is checked. Validity requires for an operator that all required input parameters
have values different from 'null’. In addition, the implementation of an operator may impose
further constraints which, e.g., may restrict the admissible interval of numerical parameters
(see Sec 3.1.3). Subsequent to successful validation, the method operate() is invoked. Each
operator is supposed to implement this method as it does the actual work. After return from
runOp (), the resulting output data can be retrieved from the operator either directly accessing
the member variables or by getter methods as provided by the specific operator. Note that
the value of the operator parameters may have changed upon return from runOp() due to
modifications in the operate() method. runOp() may throw an exception if validation of

inputs and parameters or data processing itself fails.

ApplyToMatrix normalizeOp = new ApplyToMatrix(data);
normalizeOp.setSummarizeMode(ApplyToMatrix.SummarizeMode. ROW);
normalizeOp.setSummarizeOp(new ALDArrayMean());

N R

normalizeOp.runOp();

Figure 11: An example of how to use an operator, in this case NormalizeExperimentalData0Op.

For the runOp() method two version are available. Besides the one mentioned above with-
out arguments, the method runOp(hidingMode) is available where the value of hidingMode’
influences the visibility of the operator invocation in the history. If *hidingMode’ is VISIBLE

then the invocation of the operator is visible in the history. If the value is HIDDEN the invocation

27

28 3 THE PROGRAMMER’S VIEW

of the operator and all is children is hidden. Finally, if hidingMode is set to HIDE_CHILDREN the
operator itself is visible, but all its children are hidden from the history See Section 3.5 for more
details.

An operator object may be reused to invoke processing several times as long as input pa-

rameters are changed between subsequent calls of runOp().

3.1.2 Implementing operators: Basics

Each operator in Alida is implemented by extending the abstract class ALDOperator. The ex-
ample given in Fig. 12 is the implementation of the demo operator MatrixSum, included in the
package de.unihalle.informatik.Alida.demo. It shows that an operator usually has to be an-
notated with the @ALDAOperator annotation provided by Alida. Some functionality of Alida,
most importantly the execution via automatically generated user interfaces, requires this annota-
tion to register the class as an Alida operator. If an operator is annotated with @ALDAOperator,
a public standard constructor has to be supplied (see below), otherwise a compilation error will

result. Note that abstract classes can not be annotated with @ALDAOperator.

An operator may declare its preferences for generic execution, i.e., whether to be or not to
be generically executed, by using the parameter ’genericExecutionMode’ of the annotation.

It currently supports four possible values:

NONE (default), to prohibit generic execution completely

SWING, to allow generic execution via GUI only,

CMDLINE, to allow generic execution via command line only, and

ALL, to allow for generic execution in general.

Furthermore, operators can be categorized into >STANDARD’ or ’>APPLICATION’ using the
parameter ’level’. The latter one is intended to subsume only operators that can easily be ap-
plied by non-expert users, while the first category subsumes all operators. The graphical operator
runner included in Alida provides two different view modes for either only operators annotated

as >APPLICATION’, or all operators registered according to the @ALDAOperator annotation.

Optionally, a short documentation of the operator’s functionality and usage can be defined
using the parameter ’shortDescription’ which takes a string as argument. The short descrip-
tion is for example used as tool tip text in the package tree shown in Alida’a main window (see
Sec. 2.1). Note that this string should really be short and precise, a longer documentation to
be included in Alida’s online help system can be defined via a predefined operator method (see

paragraph 'Online Help’ on page 33 for more details).

Finally, the annotation also allows to enable batch processing for an operator. If the pa-

rameter ’allowBatchMode’ is set to ’true’, which is the default, the operator control frame

28

3.1 Alida operators 29

triggered by the GUI operator runner will show the batch mode tab, and it is expected that
the operator behaves reasonable in that mode. If the parameter is set to false’, batch mode

execution will not be possible at all.

Vit

* Demo operator to calculate colum or row sums of a 2D array.

*

* @Qauthor posch

*/
@ALDAOperator(genericExecutionMode=ALDAOperator.ExecutionMode.ALL,

level =ALDAOperator.Level. APPLICATION)

public class MatrixSum extends ALDOperator {

0~ O U A W N

Figure 12: Example deriving the operator MatrixSum.

There are five issues which have to be taken care of when implementing an operator, namely

e to define the parameters of the operator,

e to implement the functionality of operation per se,

e to provide constructors, particularly a public one without arguments
e to optionally constrain admissible parameter values,

e and to indicate whether this operator prefers a complete processing history or a processing

history according to data dependencies.

The first three issues are described in the following, while the last two are deferred to Sec. 3.1.3.

Parameters. The common way to define the parameters of an operator is by annotation of
corresponding member variables. In addition, since Alida 2.5 it is also possible to dynamically
add and remove parameters via methods provided by ALDOperator. For defining parameters via
annotations currently a modified version of the annotation @Parameter as under development for
ImageJ 2.0 is used. The relevant fields of this annotation are listed below and will be detailed

in the following;:

e direction — direction of the parameter, i.e., IN, INOUT or QUT
e required — flag to mark required parameters

e label — custom name of parameter

e description — short descriptive explanation

e supplemental — flag to mark supplemental parameters

5TmageJ 2.0 project, http://developer.imagej.net/about

29

http://developer.imagej.net/about

30 3 THE PROGRAMMER’S VIEW
1 Vit
2 * Input matriz
3 x/
4 @Parameter(label= "Input_matrix”, required = true,
5 direction = Parameter.Direction.IN, description = ”Input_matrix.”)
6 | private Double[][] matrix;
7
8 | J#x
9 * Mode of summarizing
10 x/
11 @Parameter(label= "Summarize_mode”, required = true,
12 direction = Parameter.Direction.IN, description = ”Sum._over_columns_or_rows?”)
13 private SummarizeMode summarizeMode = SummarizeMode. ROW;
14
15 iz
16 * 1D Array of sums.
17 */
18 | @Parameter(label= "sums”,
19 direction = Parameter.Direction.OUT, description = ” Row_or_column_wise_sums.”
20 | private transient Double[] sums = null;

Figure 13: Example defining the parameters of MatrixSum.

mode — importance category of the parameter

dataI00rder — I/O rank among all parameters of the operator

callback — name of a callback method to be automatically invoked upon changes of the
parameter’s value

modifiesParameterDefinitions — changing the parameter’s value may add or remove

parameters of this operator

Fig. 13 shows an example how parameters are defined this way. If the >direction’ of a

parameter is set to >IN’ or ’INOUT’, the field *required’ defines whether this parameter is

required or optional. The field >description’ of the parameter gives a textual explanation,

and the >label’ may be used for display purposes. Setting the field > supplemental’ to ’true’

declares the corresponding parameter as supplemental. Via the Java inheritance mechanism an

operator inherits all parameters defined in its super classes.

The annotation parameter ’dataI00rder’ allows to rank parameters in interface generation.

For example, in GUI generation it might be favorable to place the most important parameters on

top of the window, while parameters of minor importance only appear at the bottom. Likewise,

30

3.1 Alida operators 31

in command line tools some parameters might be supposed to appear earlier in the help system
than others. Such a ranking can be achieved by specifying an I/O order. Smaller values refer to

a high importance of the corresponding parameter, larger values to minor importance.

Alida allows to categorize operator parameters according to the level of knowledge required
for their use. Often some parameters of operators are only of interest for experts, and non-expert
users do not even have to be aware of them. To this end each parameter may be annotated as
>STANDARD’ or ’ADVANCED’. Accordingly, Alida’s graphical user interface allows to switch the

view of parameters between showing only standard parameters and displaying all.

The annotation parameter ’callback’ allows to specifiy the name of a method of this
operator which is to be automatically invoked by Alida if the annotated parameter’s value is
changed. Note the callback method is invoked automatically only when changing the parameter
value using the setParameter () method. Callback functions offer amongst others the possi-
bility to dynamically reconfigure operators depending on the current context. In particular it
is possible to add and remove parameters dynamically. Consider for example an operator al-
lowing for different types of inputs, e.g. an int or a float value. Each of these types requires
specific treatment in data I/O, i.e. the graphical user interface needs to provide two different
graphical elements. Thus, to handle the different parameters one option would be to add two
parameters of the two different types to the operator and always display both (although only
one is needed at a time). Using callbacks a more elegant way to solve the problem is available.
We can add another parameter ’useRealData’ to the operator which allows to select the type
of input (see Fig. 14). If we furthermore define a callback function for that parameter the user
interface of the operator can dynamically be reconfigured. Depending on the chosen input mode
the corresponding input parameter can be added and the second one be removed dynamically.
Adding and removing parameters can be accomplished with the methods ’addParameter()’

and ’removeParameter ()’ of ALDOperator.

1 @Parameter(label= "useRealData”, required = true, datalOOrder = 2,

2 paramModificationMode = ParameterModificationMode.MODIFIES_INTERFACE,
3 callback = "initDataType”, direction = Parameter.Direction.IN,

4 description = ”Should_we_use._real_or_integral_data?.”)

5

private boolean useRealData = false;

Figure 14: Example declaring a parameter which dynamically reconfigures the operator ALDDynamicOp in
the demo package.

Note that changing the set of parameters of an operator dynamically requires Alida to
update its internal representation and also graphical user interfaces attached to the opera-
tor. To this end the programmer is requested to let Alida know that a callback function
changes the parameter set of an operator. This is accomplished using the annotation param-
eter modifiesParameterDefinitions which is to be set to MODIFIES_INTERFACE. If changing

31

32 3 THE PROGRAMMER’S VIEW

the parameter value does only modify the values of other parameters, but not the set of con-
figured parameters, modifiesParameterDefinitions is to be set to MODIFIES_VALUES_ONLY.
Note if modifiesParameterDefinitions is set incorrectly, undefined behaviour of the opera-
tor may result. The callback method handling the modification of current parameters known
by the operator should for safety not assume a consistent configuration of the parameters. For
example upon instantiation an inconstitent state my exist temporarily. Care has been taken to

consistently configure the operator in any of the constructors of the operator.

1 public void initDataType() throws ALDOperatorException {
2 if (verbose) System.out.println(” ALDDynamicOp::initDataType”);
3 if (useRealData) {

4 if (hasParameter(intParameterName)) {

5 this.removeParameter(intParameterName);

6 }

7

8 if (! hasParameter(floatParameterName)) {
9 this.addParameter(floatParameterName);
10 }

11 } else {

12 if (hasParameter(floatParameterName)) {

13 this.removeParameter(floatParameterName);
14 }

15

16 if (! hasParameter(intParameterName)) {
17 this.addParameter(intParameterName);

18 }

19 }

20

21 if (verbose) this. printInterface ();

22 |}

Figure 15: Example of a callback method modifying known parameters of the operator ALDDynamicOp in
the demo package.

Finally it should be noted that in general care has to be taken when using and implement-
ing callback functions and reconfiguring the parameter. For example, mutual calls of different
callback functions need to avoid infinite calls. Consider two parameters width and height which
should adhere to a given aspect ratio. Thus each of the two parameters is supplied with a call-
back function which sets the other parameter according to the new value and the aspect ratio.
If this is however done via the setParamteter () method this will provoke infinite re