
Martin Luther University Halle-Wittenberg

Institute of Computer Science

Pattern Recognition and Bioinformatics

User and Programmer Guide

MiToBo
microscope image

analysis toolbox

MiToBo - Microscope Image Analysis Toolbox

Version 1.0

written by

The MiToBo Development Team

Markus Glaß Oliver Greß Danny Misiak

Birgit Möller Stefan Posch

Licensing information.

This manual is part of MiToBo - the Microscope Image Analysis Toolbox.

Copyright c© 2010-2013

This program is free software: you can redistribute it and/or modify it under the terms of the

GNU General Public License version 31 as published by the Free Software Foundation2, either

version 3 of the License, or (at your option) any later version.

You should have received a copy of the GNU General Public License along with this guide.

If not, see http://www.gnu.org/licenses/.

Fore more information on MiToBo visit http://www.informatik.uni-halle.de/mitobo/.

MiToBo is a project at the Martin Luther University Halle-Wittenberg,

Halle (Saale), Germany.

Institution:

Institute of Computer Science

Faculty of Natural Sciences III

Martin Luther University Halle-Wittenberg

Von-Seckendorff-Platz 1, 06120 Halle, Germany

Contact: mitobo@informatik.uni-halle.de

Webpage: www.informatik.uni-halle.de/mitobo

1http://www.gnu.org/licenses/gpl-3.0.html
2http://www.fsf.org/

http://www.gnu.org/licenses/gpl-3.0.html
http://www.fsf.org/
http://www.gnu.org/licenses/
http://www.informatik.uni-halle.de/mitobo/
http://www.gnu.org/licenses/gpl-3.0.html
http://www.fsf.org/

Contents

1 Welcome to MiToBo! 1

1.1 MiToBo’s Core: Alida . 2

1.2 MiToBo’s Main Features: Operators, History Graphs and User Interfaces 4

1.3 About this Guide . 6

I MiToBo: The User’s View 7

2 Working with MiToBo 8

2.1 Running Operators within ImageJ and ImageJ 2.0 8

2.2 Running Operators from Commandline . 11

2.3 Graphical Workflow Design with Grappa . 12

2.4 Accessing and Exploring History Graphs . 14

3 Configuring MiToBo 18

3.1 Environment Variables and Properties . 18

3.2 List of Important Variables and Properties . 19

II MiToBo: The Programmer’s View 21

4 Programming with MiToBo 22

4.1 Using Operators in Your Code . 22

4.2 Implementing Operators . 23

4.3 MiToBo and ImageJ Plugins . 26

i

5 MiToBo Data Types 27

5.1 The Data Type Class ALDData and its Properties 28

5.2 Images in MiToBo: MTBImage . 30

5.2.1 The Ideas Behind MTBImage . 30

5.2.2 Subclasses of MTBImage: Image Types . 31

5.2.3 Construction, Data Access and Other Useful Methods of MTBImage 32

5.2.4 MTBImage I/O and the MiToBo Operator Concept 35

6 Useful Tools and Helper Classes 36

6.1 Operator Configuration . 36

Bibliography 38

ii

Chapter 1

Welcome to MiToBo!

ImageJ1 is a widely-used Java toolkit for image processing and analysis. Particularly in biomed-

ical applications ImageJ has gained large interest. ImageJ provides the user with a flexible

graphical user interface (GUI), with a large variety of basic built-in image processing opera-

tions, and also with a huge collection of optional plugins downloadable from the web. From a

programmer’s point of view, however, the ImageJ API provides less flexibility to support plugin

and application development. Especially easy data access and exchange between more complex

plugins below the GUI appear worth to be improved.

The ImageJ development project ImageJDev 2 is working towards a new release of ImageJ,

ImageJ 2.0, which is supposed to overcome many of these shortcomings of ImageJ on the pro-

gramming level. The project developers are working on a complete restructuring of ImageJ’s

system architecture to decouple algorithms and user interfaces, and to allow for a much larger

flexibility with regard to customizing ImageJ’s core to specific needs3.

MiToBo, which is the Microscope Image Analysis ToolBox developed at the Martin Luther

University Halle-Wittenberg, targets at manifold goals. On the one hand it seeks to enhance

the functionality and usability of ImageJ for programmers and users. It shares the goals of

an improved API and a strict decoupling of algorithmic functionality and user interfaces with

the ImageJDev project. For example, MiToBo and ImageJ 2.0 both define unified frameworks for

implementing new functionality in terms of plugins and operators, respectively, and both systems

support the automatic generation of graphical user interfaces from these implementations.

On the other hand, however, MiToBo offers additional functionality going behind the features

of ImageJ 2.0. With regard to graphical user interfaces it not just supports the automatic

generation of user interfaces for single operators or plugins, respectively. Rather it extends the

underlying model of image analysis procedures towards workflows where multiple operators

are sequentially or in parallel applied to given input data for extracting desired results. This

1ImageJ – Image Processing and Analysis in Java, http://rsbweb.nih.gov/ij/
2ImageJDev website, http://developer.imagej.net/
3To differentiate between both versions of ImageJ throughout the remainder of this guide, we will refer to the

old release simply as ’ImageJ’, and to the new version of the ImageJDev project as ImageJ 2.0.

1

http://rsbweb.nih.gov/ij/
http://rsbweb.nih.gov/ij/
http://developer.imagej.net/

extension is inherently included in MiToBo’s core and available to the user in terms of a graphical

editor named Grappa (Sec. 2.3) which supports users in designing workflows.

In general and contrary to the ImageJDev project MiToBo not only focusses on graphical

user interfaces, but provides mature functionality for assessing implemented algorithms from

commandline as well. In addition, it features a built-in mechanism for automatic documenta-

tion of analysis procedures which significantly simplifies the reconstruction of results and their

long-term archival. Finally, MiToBo not only inherently provides a comfortable framework for

developing and implementing new image analysis algorithms. The toolbox also includes a se-

lected collection of common image analysis techniques. They are mainly dedicated to the area

of biomedical image analysis, but not restricted to this field. Among these algorithms are for

example segmentation approaches based on active contours for cell and scratch assay images,

tools for neuron image analysis, or wavelet-based algorithms for detecting subcellular structures.

MiToBo is fully compatible with ImageJ, and features prototypical support for ImageJ 2.0

which, however, will soon be completed towards full support. MiToBo’s operators can be used

both from within ImageJ and ImageJ 2.0. In addition, MiToBo is capable of executing plug-

ins from ImageJ 2.0 and, e.g., include them in its process documentation. MiToBo is licensed

under GPL, version 3, and can be downloaded from its website http://www.informatik.uni-

halle.de/mitobo. Please also have a look at the website for installation instructions.

1.1 MiToBo’s Core: Alida

MiToBo’s main paradigm is the idea of completely decoupling the implementation of function-

ality from corresponding user interfaces for making this functionality available to users. The

strict separation of algorithms and potential user interfaces offers largest flexibility to program-

mers. It releases them from the cumbersome task to explicitly implement a variety of different

interfaces. At the same time the programmers are guided in implementing new functionality

by clearly defined specifications and interfaces from which also users benefit. The usage of im-

plemented functionality gets significantly simpler as the user interfaces for different algorithms

follow common principles with regard to structure, appearance and handling.

MiToBo is build on top of Alida4 from which it inherits the functionality for automatic user

interface generation and automatic documentation of analysis processes. Alida, which is the

acronyme for Advanced Library for Integrated Development of Data Analysis Applications, is

a framework for supporting programmers in developing data analysis applications. It ships as a

library providing core functionality for implementing so-called operators as functional units for

data analysis, and which also subsumes handy applications for running operators in a graphical

or commandline context, as well as the graphical workflow editor Grappa.

4Alida website, http://www.informatik.uni-halle.de/alida

2

http://www.informatik.uni-halle.de/mitobo
http://www.informatik.uni-halle.de/mitobo
http://www.informatik.uni-halle.de/alida
http://www.informatik.uni-halle.de/alida

Alida basically interprets each data analysis pipeline as a process of modifying given input

data (not necessarily image data) by a series of operations to produce the desired output data.

Accordingly, all data analysis procedures in Alida are implemented by operators which are the

only places to manipulate data. Furthermore, operators can be combined into workflows. Each

workflow consists of a set of operators executed sequentially, in parallel or in a nested fashion.

Particularly the latter option naturally renders each workflow to form a new operator by itself,

hence, in Alida a workflow is just an operator with extended functionality.

It is straightforward to associate a selection of sequential and/or parallel operator calls with

a directed graph data structure, where each operator is linked to a certain node of the graph, and

input and output data is passed from one operator to another along the graph edges. This graph

together with the individual configuration parameters of all involved operators is a sufficient

base for lateron reconstructing all steps of data manipulation for a given result data object.

Alida allows to extract such history graphs explicitly and by this offers a powerful tool for the

automatic documentation of data analysis processes. Note that these history graphs are not

identical to the graphs implicitly defined by workflows as introduced above. Rather a workflow

graph is often only a subgraph of the history graph associated with the results generated by

executing the workflow. This is due to the fact that operators usually rely on internal calls to

other operators and these calls are not linked to an operator node in the workflow graph.

MiToBo fully adopts the concepts of Alida, i.e. Alida is an integral part of the MiToBo

framework. Consequently, image analysis procedures are realized in terms of operators which

can be applied to data objects, e.g., images, regions or image primitives like keypoints and

lines, and yield certain results. Contrary to Alida, which does not depend on any other data

analysis framework, MiToBo builds upon ImageJ. It basically relies on ImageJ’s image data

types, however, does not interfere with ImageJ’s plugin interfaces. Rather it allows to program

ImageJ-compatible plugins based on the Alida operator concept. Thus, in addition to the Im-

ageJ interfaces which focus on plugin and script development, MiToBo defines unique interfaces

for the underlying image processing modules, i.e. operators, in terms of input/output data and

parameters, and also with regard to the way how operators can be invoked from other opera-

tors or user interfaces. This significantly improves data exchange and operator handling, and

establishes – besides the already mentioned concept of automatic documentation – a powerful

fundament for adding new sophisticated features to ImageJ and ImageJ 2.0.

In the remainder of this guide we will outline the core functionality of MiToBo and its features

with more detail. In doing so we will refer to the basic concepts of Alida only in a rudimentary

fashion. If you are interested in more details about Alida, please refer to the Alida website4

where you can find more information on Alida bundled with examples of how to implement

operators and how to execute them.

3

1.2 MiToBo’s Main Features:

Operators, History Graphs and User Interfaces

Besides providing modern image analysis tools and algorithms for microscope image analysis

the overall goal of the MiToBo project is to ease the analysis in terms of the development of

appropriate algorithms and flexible user interfaces. These interfaces should, of course, not only

be designed for experts, but also for researchers using image processing software as a tool rather

than developing their own algorithms. MiToBo builds on top of ImageJ which has achieved large

success and broad acceptance by researchers from many different disciplines who need to solve

their individual image analysis problems.

From the programmer point of view, ImageJ yields a suitable base for developing image

analysis tools in an integrated framework. The programmer does not need to take care of, e.g.,

image display and zooming, as ImageJ has answered such questions already. However, providing

a certain degree of usability and easy integration of new algorithms in terms of plugins is only one

side of the medal. On the other hand the underlying software structures and interfaces should

also provide a sufficient degree of comfort to the programmer. In particular, image processing

algorithms and user interfaces should be clearly separated from each other and data exchange

between different modules should be easy in terms of well-specified interfaces.

As ImageJ is not optimally designed with regard to some of these aspects, MiToBo does

not exclusively focus on the development of image analysis tools for microscope images, but

also optimizes underlying software in terms of data flow and data structures. In addition, self-

documentation of image processing pipelines is natively supported.

Based on the underlying concepts of Alida, MiToBo defines an image analysis pipeline as

a sequence of operations sequentially or in parallel applied to data that is handed over from

operator to operator. Such a pipeline may be viewed as a directed graph structure, where the

nodes represent different operators and the data flow is indicated by edges in between. From this

interpretation of image analysis in general, several design issues are derived that are embedded

in the Alida core of MiToBo. The concepts by themselves as well as functionality build on top

of them are an integral part of MiToBo and provide users as well as programmers with enhanced

image analysis tools and an improved infrastructure for development and research.

Operator Concept. The interpretation of image analysis pipelines as a sequence of operations

directly leads to the concept of operators implemented in MiToBo. All manipulations that are

performed on data are done by operators. Vice versa operators are the only actors that work on

given data, modify the data or generate new data entities from given input data. Accordingly,

all image processing and analysis algorithms in MiToBo are implemented in terms of operators

with clearly specified input and output interfaces.

The operator concept is adopted from Alida. Technically Alida defines a common super-

class for data analysis modules denoted ’ALDOperator’ from which the MiToBo main operator

4

class ’MTBOperator’ is derived, and which all MiToBo operator classes extend. Furthermore, the

concept incorporates a formal description of the interface of an operator, i.e. a formal specifica-

tion of its inputs, outputs, and parameters, which is realized by the Java annotation mechanism.

In addition, there is only one possibility to invoke operators which is a single public routine to

be called from external which results in a unified invocation procedure for all operators. Among

other things, this yields the base for automatic process documentation and user interface gen-

eration. Moreover, every new operator implemented based on MiToBo and following these rules

directly benefits from this infrastructure, i.e. can generically be executed and is automatically

considered in extracting processing graphs.

Automatic Process Documentation and History Graphs. The Alida operator concept

with its transparent interface specifications allows a unified handling of operators in various

contexts, e.g., with regard to graphical programming or automatic or semi-automatic code gen-

eration where compatibility checks and operator calls have to be standardized. In addition, the

restriction of operator invocation to a single available method also serves as a basis for another

sophisticated feature of MiToBo which is the fully automatic documentation of image analysis

pipelines. Given the interpretation of image analysis pipelines as sequences of operators, all that

remains to be done for process documentation is to log the calls of all operators as well as their

input and output data and save their parameter settings. Together with information about the

order of operator calls, for example represented in a directed graph data structure, these data

form a complete protocol of the pipeline and allow for longterm documentation of analysis pro-

cesses. In particular, linked to specific result data objects, they allow to reproduce all results

ever produced during the course of algorithm development, testing, or experimental evaluation.

The concept of automatic process documentation is realized in Alida, thus, it is also an

integral part of MiToBo and directly embedded into the operator concept. Operators provide

internal functionality to store process data during the course of an analysis procedure which

later on can be extracted in terms of a history graph file in XML format. Such a graph is

associated with each data object being the result of a certain operator or sequence of operations.

Although the majority of objects will be images, processing histories can also be associated with

segmentation results like regions or contours as well as histograms or any other numerical data.

See Figure 2.5 for an example processing graph.

User Interfaces and Workflow Design For (scientific) programmers the development of

new image analysis algorithms is mainly linked to the implementation of functionality to achieve

desired results. For users who would like to benefit from new algorithms in their daily work

the availability of suitable user interfaces is equally important. But as interface design and

development usually coincides with a significantly increased amount of time for the programmer

required to provide users with handy interfaces this aspect is often neglected.

5

The unified invocation procedures for operators in Alida and their clear specification of in-

put and output parameters pave the way for releasing programmers from the cumbersome task of

implementing user interfaces. Alida, and consequently MiToBo, inherently include mechanisms

to automatically generate graphical as well as commandline user interfaces from operators in a

completely generic fashion. Particularly, Alida’s built-in support for a large variety of standard

Java datatypes as operator parameters as well as for more sophisticated types like arrays, col-

lections or enumerations renders it quite easy to implement new functionality including suitable

user interfaces with a minimum of programming overhead.

And also users benefit from MiToBo’s automatically generated user interfaces. Naturally

all interfaces follow the same design and handling principles, e.g., all of them provide access

to MiToBo’s online help or allow for running the operator in batch mode. Moreover, Alida

and MiToBo not only automatically generate user interfaces for single operators, but inherently

support also the design of complete workflows formed by multiple operators which only in

combination yield desired results. The graphical workflow editor Grappa being shipped with

Alida and MiToBo targets at supporting users in designing new workflows in a graphical manner.

It integrates all operators implemented in the MiToBo framework as potential nodes of workflow

graphs and allows for linking input and output parameters of these nodes to define more complex

workflows. Thereby it takes full benefit of Alida’s functionality, i.e. Grappa offers automatically

generated graphical components for node configuration, data compatibility checks on dragging

edges, and the fully automatic verification of operator configurations at runtime.

1.3 About this Guide

This guide is organized in a short introductory section and two main parts. The introductory

section – which you most probably have already read in the last few minutes – is dealing with

some general remarks, while the two main parts provide more details. The first part is dedicated

to users who are interested in using MiToBo plugins or commandline tools for their own work, e.g.,

to benefit from the automatic process documentation capabilites of MiToBo or to adopt provided

image analysis algorithms for solving their own image processing problems. The second part

introduces the reader to some more internals of MiToBo, i.e. it presents more details about the

operator concept and how to use it with own code, more information about specific MiToBo

data types and also about programming with MiToBo in general. Note that only some few basics

of the underlying concept of Alida are presented. For more details about its functionality and

technical implementation refer to the Alida manual to be found on the Alida webpage4.

We hope that the new perspectives that Alida and in particular MiToBo open with their

concepts might be helpful for developers and users of image processing applications, and by this

extend ImageJ’s selection of valuable features. If something remains to be clarified or if you have

further notes and comments, just write an email to us at mitobo@informatik.uni-halle.de.

We are happy to get in touch with you!

6

Part I

MiToBo: The User’s View

7

Chapter 2

Working with MiToBo

MiToBo ships with a large collection of image analysis operators, basically developed for micro-

scope image processing and analysis, however, applicable to any other image analysis task as well.

After MiToBo was successfully installed (please refer to its website, http://www.informatik.uni-

halle.de/mitobo, for details on the installation procedure) you can directly use the operators

and plugins of the toolbox like any other ImageJ plugin (Sec. 2.1). In addition, MiToBo provides

a commandline tool for running operators, e.g., from shell scripts (Sec. 2.2). Irrespective of how

an operator is invoked, after termination processing histories can be accessed and explored for

all result data objects (Sec. 2.4). Finally, if you require to combine various operators into a more

complex workflow for solving your specific problem, the graphical editor Grappa offers support

for doing this in a comfortable graphical manner (Sec. 2.3).

2.1 Running Operators within ImageJ and ImageJ 2.0

After installing the MiToBo jar archive with all its dependencies MiToBo adds a new entry de-

noted ’MiToBo’ to ImageJ’s plugin menu from where you have access to MiToBo’s functionality

(Fig. 2.1). It basically subsumes an option ’MiToBo Runner’ to open MiToBo’s operator runner

which grants access to all MiToBo operators (see below), and an item ’Grappa Editor’ to invoke

the graphical workflow editor (Sec. 2.3). In addition, there might appear some more items. All

of them are related to so-called ’quick start plugins’. These ImageJ plugins allow direct ac-

cess to some interesting operators (and some few real plugins) in MiToBo dedicated to specific

applications or techniques. Among those are for example

• the ’Scratch Assay Analyzer’ which is a tool for quantifying gap development in scratch

assay images as used in cell migration experiments [GMZ+12, GMP12],

• the ’Snake Optimizer’ which features an implementation of parametric active contours

and in particular allows for interactive evaluation of various energy models [MM12],

8

http://www.informatik.uni-halle.de/mitobo
http://www.informatik.uni-halle.de/mitobo

Figure 2.1: Screenshot of ImageJ’s plugin menu including MiToBo’s submenu.

• ’Threshold Image’ which is an interactive image thresholder,

• and finally the two plugins ’Open Image MTB’ and ’Save Image MTB’ which allow for

image I/O considering extracted processing histories (cf. Chap. 2.4).

As mentioned above the key component for accessing MiToBo’s functionality from within

ImageJ is its operator runner. Fig. 2.2 shows a screenshot of its main window after it has been

invoked from ImageJ’s plugin menu1.

Figure 2.2: Screenshot of MiToBo’s operator runner.

The operator runner basically displays

a hierarchical menu of all available Alida

and MiToBo operators, organized according to

their Java packages. From this menu you can

select the operator of your choice, either by

simply double-clicking on its name, or by se-

lecting the entry and clicking the ’Configure

Operator . . . ’ button at the bottom of the win-

dow. Subsequently MiToBo will launch a con-

trol window for the selected operator which

allows you to configure and execute the op-

erator you have chosen. Note that in MiToBo

two different categories of operators are avail-

able. On the one hand there are operators op-

timized for use by non-experts and often of

general interest, while on the other hand it

also subsumes a large collection of more so-

phisticated and often quite specific operators.

You can switch the operator selection menu

between these categories via the item ’Operator Level’ in the menubar on top of the window.

1MiToBo also offers a toolbar button and an associated start-up macro to enable direct access to the operator

runner, please refer to the installation instructions on the webpage for details on how to setup the button.

9

Figure 2.3: Screenshot of the control window for the ’Snake Optimizer’ operator.

In Fig. 2.3 as an example the control window for the ’Snake Optimizer’ operator is depicted.

It is automatically generated by the framework from the operator’s source code and allows for

operator configuration and execution. The window basically displays a panel with graphical

elements to configure all the parameters of the operator. It offers a menubar where you can

find items for loading and saving the operator configuration, change viewing options, and also

have access to an online help for the specific operator. The help provides detailed information

on the operator’s parameters and how to configure the operator properly. The bottom section

of the control window contains control elements for executing the operator. In the simplest case

there is just a ’Run’ button. More sophisticated operators, like the ’Snake Optimizer’, allow for

advanced user interaction. For these operators the panel includes additional buttons, e.g., for

pausing and resuming the operator.

10

2.2 Running Operators from Commandline

When using ImageJ or ImageJ 2.0 it is quite natural to interact with plugins and operators,

respectively, via graphical user interfaces. Nevertheless, quite often not only some few images

need to be analyzed, but nowadays even high-throughput processing is an important issue. While

ImageJ has built-in functionality for scripting and macros, MiToBo in addition offers a handy

commandline tool by which all of its operators (and also ImageJ 2.0 plugins) can directly be

called from console in a generic fashion. This way they can easily be applied to large collections

of image data and also be used from within shell scripts or comparable frameworks.

The commandline operator runner is essentially an Alida tool, i.e. is to be found in the

package de.unihalle.informatik.Alida.tools.OpRunner. Its basic usage is as follows:

java OpRunner <operator name> { parameter=value}

Its first argument is the name of the operator class to be executed. You do not need to specify

its complete package name, but the simple class name by itself is usually sufficient. Moreoever,

the commandline operator runner also supports auto-completion if the given prefix is unique

among all operators and plugins found on the classpath.

Following the operator name the commandline operator runner expects a set of ’name=value’

pairs for the parameters of the operator. While the parameter names are defined by the operator’s

member variables (execute the operator runner with option ’-n’ to only print its parameters),

the exact syntax of the value strings depends on the data types of the parameter and their data

I/O providers. For native data types and strings it is sufficient to simply provide the concrete

values, for image data types a filename is required from where to load the image. The following

example illustrates this by calling an operator for image erosion:

java OpRunner ImgErode inImg=test.tif masksize=3

However, the commandline operator runner and its built-in parser also support far more com-

plex calls to operators. To illustrate this, below the call to an extended snake segmentation

operator is shown. The operator ’SnakeOptimizerCoupled’ allows to apply multiple simple

snake optimizer operators of type ’SnakeOptimizerSingleVarCalc’ simultaneously to one im-

age, given by the parameter ’inImg’. The operator among others takes a prototypical operator

object of type ’SnakeOptimizerSingleVarCalc’ as input parameter (’snakeOptimizer’). This

object by itself expects, e.g., a weighted set of energies (’energySet’) which is formed by a col-

lection of energy objects (’energies’) and an array of corresponding weights (’weights’). The

energy objects can again be parametrized, e.g., in the example below the energy object of type

’MTBSnakeEnergyCD CVRegionFit’ defines two parameters lambda in and lambda out:

java OpRunner SnakeOptimizerCoupled \

11

initialSnakes=RoiSet.xml inImg=cell.tif outSnakes=snakesOut.xml \
snakeOptimizer=’$SnakeOptimizerSingleVarCalc:{energySet= \

{energies=[$MTBSnakeEnergyCD CVRegionFit:{lambda in=1.0,\
lambda out=5.0}],\

weights=[1.0]}}’

For accessing the results of an operator invoked by the commandline runner it is required

to specify targets for the operator’s output parameters. In case of the image erosion operator it

provides its result through an output parameter denoted ’resultImg’. Consequently, to save the

eroded image to file it is sufficient to extend the operator call as follows:

java OpRunner ImgErode inImg=test.tif masksize=3 resultImg=result.tif

Note that output parameters for which no target is provided will be ignored by the commandline

operator runner, thus, are not available upon termination.

The examples shown above only provide you with a very brief overview of the functionality

of the commandline operator runner. To learn more about all its options and features, please

refer to the documentation of Alida where more details can be found.

2.3 Graphical Workflow Design with Grappa

Solving sophisticated image analysis problems usually requires to apply a combination of dif-

ferent algorithms to given data to extract desired results. In ImageJ this can be accomplished

by applying a sequence of plugins sequentially or in parallel to given image data and record a

macro of the processing steps for later reuse. MiToBo extends ImageJ’s support for such work-

flows formed by multiple plugins or operators, respectively, by featuring a graphical editor for

simplified workflow design. The editor named Grappa, which is the acronym for Graphical

Programming Editor for Alida, can be invoked from the plugins menu.

In Fig. 2.4 a screenshot of the Grappa main window is shown. The window is basically

separated into the node selection menu on the left and the workbench area on the right. In the

selection menu all Alida and MiToBo operators (and in ImageJ 2.0 also a subset of its plugins)

are available as processing nodes for Grappa. The nodes in the selection menu are arranged in

a hierarchical ordering according to their package structure.

Workflows can be designed in the workbench area on the right. It allows to instantiate

different workflows each being linked to an individual tab of the workbench panel. Operator

nodes can be added to a workflow either by double-clicking on the operator name in the selection

menu or by selecting an operator and afterwards clicking once on the position in the workflow

tab where the operator node should be positioned. Nodes can easily be dragged and repositioned

12

Figure 2.4: Screenshot of the graphical workflow editor Grappa.

as well as resized by mouse actions. Once different nodes have been added to a workflow, edges

can be added between ports of different nodes with the mouse to define the flow of data and

control. All edges are directed, always connecting an output port of one node with an input port

of another. Note that on drawing edges Grappa performs type-checking, i.e. only ports being

associated with compatible parameter data types can be linked to each other.

For node configuration the mechanisms of the graphical operator runner (Sec. 2.1) are

adopted. From the context menu of a node (which opens on right-clicking on the node) the

option ’Configure. . . ’ is available by which a graphical configuration window pops up. The

window is essentially identical to the control window which is displayed by the operator runner

except that the control section is missing. All parameter values can easily be edited via the

graphical components of the window.

Nodes in a workflow can have different states indicated by the color of their border. Red

framed nodes are not ready for execution, i.e. their configuration is not complete. If a node

is readily configured and can directly be executed its border has a yellow color, while nodes

that are configured, however, require additional input data from preceeding operator nodes (like

most of the nodes in Fig. 2.4) have an orange color. Prior to executing these orange nodes it is,

thus, necessary to execute the preceeding nodes first. Grappa takes care of such dependencies,

i.e. automatically executes nodes first from which result data is required for proper workflow or

node execution. After successful execution of a node its color changes to green indicating that

13

result data is available. These data can graphically be examined via the node’s context menu

from which a result window can be opened. Note that Grappa updates the state of a node in

real-time, i.e. each change in its configuration or state is directly mirrored by its border color.

For executing a workflow Grappa offers different modes. Either a complete workflow can be

executed or just a fraction of it up to a certain node. To run the complete workflow use the

corresponding item from Grappa’s menubar or right-click on an empty place in the workflow

tab and select the related option from the context menu which is shown. To only partially run

a workflow select the corresponding option from the context menu of the node until which you

would like to execute the workflow. Nodes having green color cannot be executed again until

their configuration is changed.

Apart from the basic functionality for workflow design Grappa offers some additional con-

venience functions to simplify working with the editor. For example workflows can be saved to

and read from disk. They can be renamed to meaningful names, and also a complete reset of a

workflow in terms of deleting all nodes is possible. For more information on Grappa please refer

to the Alida documentation and its user and programmer guide.

2.4 Accessing and Exploring History Graphs

One of the main features of MiToBo and Alida, respectively, is their capability of automatically

documenting data processing pipelines. The operator concept allows to get a detailed internal

log of all data manipulations, which can subsequently be used to convert the process history

into a directed graph data structure denoted history graph in the following.

The MiToBo operator concept defines operators as the only places where data are processed

and manipulated. Each call to an operator is associated with a certain configuration of the oper-

ator, defined by its parameters. The operator receives a number of objects as input parameters,

which for example may be images or segmentation results like regions. The behaviour of the

operator is controlled by control parameters, for example the size of a structuring element or a

threshold. Finally, the operator produces output data, in particular images, but also for example

numerical data, regions or contours.

In MiToBo an image analysis pipeline usually consists of a set of different operators that are

applied to incoming data and produce result data. The order in which the operators work on

the data depends on the specific pipeline. The invocation of operators can be of pure sequential

nature or subsume parallel processing steps. In addition, a nested application of operators is

possible. Given this principle each analysis pipeline and its data flow may be interpreted and

visualized as a directed acyclic graph (cf. Fig. 2.5 for an example).

A MiToBo history graph basically consists of operator and data nodes which are connected by

edges indicating the flow of data, as can be seen from Fig. 2.5. The figure shows a screenshot of

14

chipory which is a graph visualization tool derived from Chisio2. Chisio is a graph visualization

and editing tool written in Java which we extended for the specific needs of Alida and MiToBo

history graphs. More detailed information about chipory and its installation and usage can be

found on the Alida webpage and in particular in Alida’s user guide.

Within the history graph each operator node, which is linked to the call of a specific operator,

is depicted as a rectangle with the operator’s classname in the bottom line, For each input

and output parameter object the operator node features input and output ports which may be

conceived as the entry or exit points of data into and out of the operator. These ports are depicted

as filled ellipses in light green (input ports) and dark green (output ports), respectively. Each

input port has exactly one incoming edge, while an output port may be connected to multiple

target ports, depending on where the data is passed to. In Fig. 2.5 the result image ’resultImg’

produced in the MTBMedian operator is handed over to the ActiveContours operator as well

as returned directly to the calling operator CellSegmentation. Each port of an operator has

an individual name indicating the input or output object associated with the port. This allows

to distinguish between ports if one operator defines multiple input ports as is the case for the

ActiveContours operator.

In addition to operator nodes and their ports there are also data nodes in the graph cor-

responding to the creation of new data objects, e.g., when data is read from file, cloned or

generated from scratch. These are depicted as triangles filled in light grey. In Fig. 2.5 two data

objects are created outside of the processing pipeline as a result of reading images (at the top

of the figure) and are passed as input data objects to the Cell Segmentation operator. Addi-

tionally, three more images are created by the operators MTBMedian, MTBOtsuThresholding and

ActiveContours which in all three cases form the resulting data objects of these operators and

are passed to the outside via output ports.

Fig. 2.5 shows the history graph for the output object ’resultImg’ of the operator

Cell Segmentation, where the corresponding port is shown as a yellow ellipse at the bottom of

the figure. This history subsumes the calls of seven operators in total where some of these calls are

nested. The outmost operator is Cell Segmentation which was implemented as a MiToBo plugin,

indicated by the underscore in its name (cf. Chap. 4.3). This plugin calls the CellSegmentation

operator implementing the actual algorithms. For cell segmentation two input images are re-

quired whereas one of these images is median filtered by MTBMedian while the second one is fed

into the DetectNuclei operator. Inside of that operator first MTBOtsuThresholding is called,

and the binary result image is subsequently post-processed applying MTBFillHoles. Its result

is handed back to the calling DetectNuclei operator and also directly propagated further back

to the CellSegmentation operator. This operator finally calls the ActiveContours operator

which generates one of the two result images of CellSegmentation. The second result image is

the median filtered image which is also returned to the calling plugin as mentioned above.

2 Chisio website, http://sourceforge.net/projects/chisio

15

http://sourceforge.net/projects/chisio

Figure 2.5: A MiToBo history graph: the directed acyclic graph represents the application of nested

operators. Calls to operators are depicted as rectangles, input and output ports as ellipses filled in light

or dark green, respectively. The grey triangles relate to newly generated data objects, and the yellow

ellipse indicates the result data object to which this history graph is linked to.

16

The history data is stored in XML format in a file accompanying the actual data object file.

The format basically relies on GraphML3 with some Alida and MiToBo specific extensions. When

reading and writing images using MiToBo’s ’Open Image MTB’ and ’Save Image MTB’ plugins,

or directly its ’ImageReaderMTB’ and ’ImageWriterMTB’ operators, respectively, history files

are automatically considered. For example, for an image stored in the file ’example.tiff’ its

history data is automatically saved to the accompanying file ’example.ald’. The extension ’.ald’

indicates a MiToBo processing history file and in fact is derived from Alida, which is responsible

for the processing histories in MiToBo. When later on reading the image using ’Open Image MTB’

or ’ImageReaderMTB’, MiToBo’s open operator checks for an accompanying file, and if one is

found it is read and the corresponding history data is linked to the image object. This allows to

trace the processing history of an object in the long run and even when the processing pipeline

was interrupted by intermediate savings of data to disk.

Note, the identity of images is not preserved in the processing history across file boundaries.

If two (or more) input images for the current top level operator (in Fig. 2.5 this would be the

operator Cell Segmentation), are loaded from the same image file, both will nevertheless be

displayed as different data nodes in the history. The reason is that object identity is not – and

maybe even cannot – be checked from the processing history of former operations.

Important Note: At the moment, with regard to ImageJ, automatic process documentation

is only supported for operators and plugins from MiToBo itself, i.e. intermediate calls to pure

ImageJ functions are not documented and may corrupt the processing history. Contrary, in

ImageJ 2.0 also calls to ImageJ 2.0 plugins are included in the history. But note that in both

cases, to make use of the automatic documentation to its full extent, it is indispensable to use

the I/O operators of MiToBo to open input data and save the resulting output data as the ImageJ

and ImageJ 2.0 I/O functions do not know anything about histories.

3GraphML website, http://graphml.graphdrawing.org/

17

http://graphml.graphdrawing.org/

Chapter 3

Configuring MiToBo

Several of MiToBo’s operators as well as the framework itself support individual configuration

by the user. For example initial files or directories the operators should work on can be specified

by the user. The probably most common way of individual configuration is to pass specific path

or flag settings to MiToBo operators by environment settings as outlined in this chapter.

3.1 Environment Variables and Properties

MiToBo operators support three different ways for user specific configuration:

a) environment variables

b) properties of the Java virtual machine (JVM) specified with

the option ’-Dproperty=value’ upon invocation of the JVM

c) ImageJ preferences as specified in the file /̃.imagej/IJ Prefs.txt1

This order reflects the priority of the three options, i.e. environment variables overwrite JVM

properties, and the latter ones overwrite ImageJ preferences. If for a certain operator no config-

uration values are provided by any of these three ways, all default settings of the corresponding

internal variables are solely depending on the internal settings of each individual operator.

In general there is no limitation for an operator to define configuration variables. Usually

they should be properly documented in the Javadoc of the corresponding class. Some variables of

general interest, however, are listed in the next Section 3.2 as almost all users might be interested

in using them.

1Please note that this is the default configuration file of the (old) ImageJ framework, in ImageJ 2.0 its name

and place in the file system might change. Refer to the documentation of the ImageJDev project for details.

18

The naming of the environment variables and properties is not subject to strict rules,

i.e. there are no restrictions in Alida/MiToBo on how to choose the names. However, it is strongly

recommended to adhere to the Alida/MiToBo naming convention as this helps to avoid name

conflicts. In MiToBo all variables start with prefix ’MITOBO’. Likewise in Alida all variables

start with prefix ’ALIDA’. Note that some of the Alida specific variables are also of interest in

MiToBo. The second part of the name is usually the operator class using the variable, and the

third part is the actual variable name.

Example:

Imagine an operator called ’DummyOperator’ which defines a variable ’Input’.

The environment variable that will be checked by the operator is then

MITOBO DUMMYOPERATOR INPUT

Obeying the naming conventions for ImageJ properties the

corresponding preference and also the JVM property is named

mitobo.dummyoperator.input

Besides operator specific variables there may exist variables of global interest shared by

different operators. In their names the second part is simply missing, like in

MITOBO IMAGEDIR or mitobo.imagedir,

repectively. When defining such variables, however, special care has to be taken for en-

suring that such variables are interpreted the same wherever they are used. And even more

important, it needs to be thoroughly verified that the variables were not already defined

elsewhere which might result in strange behavior of certain operators.

3.2 List of Important Variables and Properties

Below you find a list of variables and properties of presumably common interest.

• ALIDA OPRUNNER FAVORITEOPS

– used by: ALDOpRunnerGUI, ALDGrappaRunner, Op Runner, Grappa Editor

– description: configures which operators should automatically be unfolded in the op-

erator selection menus of the graphical operator runners and Grappa upon start-up;

it should be set to a filename, and the corresponding file should contain one operator

per line, e.g.

de.unihalle.informatik.Alida.demo.ALDCalcMeanVector

de.unihalle.informatik.MiToBo.tools.image.ImageDimensionReducer

...

19

• ALIDA OPRUNNER LEVEL

– used by: ALDOpRunnerGUI, ALDGrappaRunner, Op Runner, Grappa Editor

– description: configures which set of operators is to be displayed initially in the selec-

tion menu; possible options are either all available operators (’standard’) or just the

ones categorized as being easier to use (’application’)

• ALIDA OPRUNNER WORKFLOWPATH

– used by: all graphical and commandline operator runners, and by Grappa

– description: specifies a directory where the runners are searching for additional work-

flows that are to be registered by the framework

• ALIDA VERSIONPROVIDER CLASS

– used by: Framework

– description: class used for acquiring software versions for process documentation; the

class must extend the base class ALDVersionProvider to be found in the Alida

package de.unihalle.informatik.Alida.version

• MITOBO IMAGEDIR

– used by: Open Image MTB , Save Image MTB

– description: Directory where images are expected; checked if the two variables

MITOBO OPENDIR and/or MITOBO SAVEDIR are not set

• MITOBO OPENDIR

– used by: Open Image MTB

– description: directory where image browsing starts the first time

• MITOBO SAVEDIR

– used by: Save Image MTB

– description: directory where file selection starts the first time

20

Part II

MiToBo: The Programmer’s View

21

Chapter 4

Programming with MiToBo

MiToBo contains a selection of different operators for image analysis which can readily be applied

to solve specific problems. While the first part of this guide shows how operators can be executed

within ImageJ and via commandline, in this second part we are discussing how operators can be

invoked on the programmatic level (Sec. 4.1). Moreover, we not only show how to use existing

operators, but we also introduce you to the basics of writing operators on your own (Sec. 4.2).

This becomes necessary, e.g., if the existing MiToBo operators do not suit your needs, if you would

like to benefit from MiToBo’s support for automatically generating graphical and commandline

interfaces for your own algorithms, or if you would like to have your own analysis procedures

automatically documented. Note that as MiToBo operators are basically Alida operators here

we will focus on the substantial basics of writing MiToBo operators in the context of ImageJ.

For more general details about implementing operators in general please refer to the Alida

programmer’s guide where much more details about Alida’s concepts can be found.

4.1 Using Operators in Your Code

Alida defines a unique invocation mechanism for operators which needs to be applied when

using operators on the programmatic level. Basically the following steps are necessary to use a

MiToBo operator in your own code:

1. instantiate an object of the desired operator class

2. set the operator parameters

3. execute the operator by calling its ’runOp(...)’ method

4. get the results

22

1 protected MTBImage myFunction() {
2 ImgErode ero= new ImgErode();

3 ero.setParameter(”inImg”, this.getInputImage());

4 ero.setParameter(”masksize”, 3);

5 ero.runOp(null);

6 ImgDilate dil= new ImgDilate(ero.getResultImage(), 3);

7 dil .runOp(null);

8 MTBImage openedImg= dil.getResultImage();

9 return openedImg;

10 }

Figure 4.1: Example of a hypothetical function applying an opening to an image which is implemented

based on MiToBo operators for morphological operations.

In Fig. 4.1 an examplary function calling MiToBo operators is shown based on which we will

now outline the different steps listed above in detail. Suppose that the function that is to be

realized based on MiToBo operators should perform an opening operation on an image, i.e. first

do an erosion, then a dilation. MiToBo includes two operators for these tasks, the erosion operator

’ImgErode’ and the dilation operator ’ImgDilate’. Given these operators our opening function

can be implemented as follows. First of all we instantiate an object of class ’ImgErode’ (line 2

in Fig. 4.1) and specify the parameters using its ’setParameter(...)’ method (lines 3 − 4).

The method actually takes as input the name of the parameter to be set and the corresponding

value. In line 5 we are running the operator calling its ’runOp(...)’ method. Note that this

method is the only way of executing an operator. Although there are different versions of the

method dedicated to different strategies on how to document the call to the operator in the

processing history all of them basically do some logging for the processing history and then call

the operator’s ’operate()’ method. Please refer to the Alida guide for further details.

After eroding the input image we want to apply a dilation to the result image of the ero-

sion. To this end we instantiate an object of type ’ImgDilate’ (line 6). This operator class, for

convenience, offers a constructor which already takes the parameter values as arguments. Con-

sequently, the call of the constructor is sufficient in this case to readily configure the operator.

In line 7 the dilation operator is finally executed, and subsequently the result image is fetched

from the operator and returned by the function that was just implemented.

4.2 Implementing Operators

When the MiToBo operator runners or Grappa are required to invoke an operator, they basically

follow the steps outlined in the previous section that have to be performed for using an operator

on the programmatic level. First they instantiate an object of the corresponding class, then they

set the operator’s parameters to the values queried graphically or via commandline from the

23

user, and finally they call the ’runOp(...)’ method for executing the operator. To enable this

procedure generically for all operators the implementation of an operator requires the following

things to be done:

1. implementation of a public default constructor for the new operator class without any

parameters as this is the only constructor of a class which can be called generically

2. definition of the operator parameters, in Alida/MiToBo this is accomplished by annotating

corresponding member variables of the operator class

3. implementation of the method ’operate()’ which should contain the functionality

4. annotation of the operator class as a whole

The last step is necessary to enable Alida to automatically register operators upon start-up,

e.g., to make them available to the graphical operator runner or as nodes in Grappa.

In Fig. 4.2 a code snippet of a prototypical operator class is shown. The code is a

slightly simplified version of the operator class ’de.unihalle.informatik.MiToBo.morpholo-

gy.ImgErode’ shipped with MiToBo.

An operator in MiToBo is basically the implementation of a class extending the base class

’de.unihalle.informatik.MiToBo.core.operator.MTBOperator’ common for all operators

(which by itself extends ’de.unihalle.informatik.Alida.operator.ALDOperator’). Accord-

ingly from line 4 of the code it can be seen that the new class extends MiToBo’s operator base

class. Subsequently in lines 6− 16 the parameters of the operator are declared. They are given

by member variables annotated as ’Parameter’. This annotation is an Alida annotation, but

is quite similar to the corresponding annotation used in ImageJ 2.0. The annotation requires for

each parameter to specify a label that, e.g., is used for automatic GUI generation. In addition,

the direction of the parameter needs to be specified, i.e. if it is an input or an output parameter,

and a short description should be given. This description is for example used to generate tooltips

for the parameters in the operator configuration windows.

In lines 18− 24 the default constructor of the class is implemented, while its main function

is to be found in lines 33− 40. The ’operate()’ function does the actual work. In this example

it simply calls an internal method of the operator class (not shown for clarity), and stores the

result of this function in the operator’s output parameter ’resultImg’.

As mentioned above the operator class by itself needs to be annotated to be automatically

registered by the Alida/MiToBo framework. This annotation can be seen in lines 2− 3. The an-

notation ’ALDAOperator’ has certain parameters, e.g. a generic execution mode can be specified

which allows to exclude operators from generic graphical or commandline execution. Also the

category of the operator can be specified, i.e. if it is easily applicable and of common interest, or

if it is rather specialized and most probably not of common interest for most users (cf. Sec. 2.1).

24

1 ...

2 @ALDAOperator(genericExecutionMode=ALDAOperator.ExecutionMode.ALL,

3 level =Level.APPLICATION)

4 public class ImgErode extends MTBOperator {
5

6 @Parameter(label= ”Masksize”, required = true, dataIOOrder = 1,

7 direction = Parameter.Direction.IN, description = ”Masksize”)

8 private int masksize = 3;

9

10 @Parameter(label= ”Input Image”, required = true, dataIOOrder = 0,

11 direction = Parameter.Direction.IN, description = ”Input image”)

12 private transient MTBImage inImg = null;

13

14 @Parameter(label= ”Result Image”, required = true,

15 direction = Parameter.Direction.OUT, description = ”Result image”)

16 private transient MTBImage resultImg = null;

17

18 /∗∗
19 ∗ Default constructor.

20 ∗ @throws ALDOperatorException

21 ∗/
22 public ImgErode() throws ALDOperatorException {
23 // nothing to do here

24 }
25

26 /∗∗
27 ∗ Returns the eroded image, null if not available .

28 ∗/
29 public MTBImage getResultImage() {
30 return this.resultImg;

31 }
32

33 /∗∗
34 ∗ This method does the actual work.

35 ∗/
36 @Override

37 protected void operate() {
38 MTBImage result= this.applyMask(this.getInputImage(), this.getMasksize());

39 this.resultImg = result ;

40 }
41 ...

Figure 4.2: Example implementation of an operator in MiToBo.

25

On implementing a new operator you are basically free on how to organize your class. One

thing you should keep in mind, however, is that the ’operate()’ method is the only method

ever called on operator objects from outside (except from public getter and setter methods, if

provided). Hence, all initialization required by the operator should be done within or at least

be invoked from within this function, and never within any constructor. Finally, for improving

usability of operators it is advisable, even if not mandatory, to provide getter and setter methods

for its parameters as these significantly simplify usage of the operator on the programmatic level.

4.3 MiToBo and ImageJ Plugins

The ImageJ plugin concept is a very powerful tool to extend the functionality of ImageJ and,

e.g., integrate third-party APIs. Accordingly, one of the main goals of the ImageJDev project

developing ImageJ 2.0 is to preserve the usability of available ImageJ plugins as far as possible.

MiToBo seeks to extent ImageJ’s functionality, i.e. a natural aim is to have MiToBo operators

directly available in ImageJ and ImageJ 2.0 as well, and to provide full integration in terms

of easy interaction with other plugins. The straightforward solution for this goal would be to

associate each single MiToBo operator with an explicit ImageJ 1 or 2.0 plugin. But, we have

outlined the basic idea of generic operator execution implemented in Alida and MiToBo before.

Consequently, as MiToBo’s operator runners already provide functionality to execute all operators

in a generic fashion, there is no need for explicit plugin implementations anymore. Rather it is

sufficient to make the operator runners available as plugins in ImageJ and ImageJ 2.0 – which is

already the case. Given that all operators can directly be used from within both ImageJ releases.

Indeed this approach of having MiToBo provide its own operator execution mechanisms

also solves the problem of compatibility to a certain degree. In particular, during the ongoing

transmission period between both ImageJ versions it remains unclear of how to implement new

plugin functionality that should at best be available simultaneously in ImageJ and ImageJ 2.0.

Although ImageJ 1 plugins should in principal be supported by ImageJ 2, both types of plugins

are not compatible with each other, and ImageJ 2 plugins cannot be executed from within

ImageJ 1. Thus, by its operator runners being completely independent of ImageJ MiToBo offers

an execution mechanism which is compatible with ImageJ and ImageJ 2.0.

Of course, this only holds if no ImageJ 1 or ImageJ 2 specific functionality is used by the

operators. As soon as this is done, an operator is tightly linked to one of the two ImageJ versions.

While using ImageJ 1 functionality might still allow to execute the operator in ImageJ 2, the

use of ImageJ 2 renders the operator unsuitable for usage with ImageJ 1. However, this is not a

MiToBo specific problem, but rather a question of software design. Binding an implementation to

an external library always renders the implementation useless without that library. The only way

to avoid such tight bindings with regard to operators and ImageJ is to keep the functional core

of operators free of ImageJ version specific dependencies as far as possible if the implementation

targets at both releases.

26

Chapter 5

MiToBo Data Types

MiToBo defines a set of its own data types. Besides new image data types improving the ImageJ

image classes, these include for example regions and contours and some other data type primitives

frequently used with regard to image analysis applications. Most data types can be found in the

package ’de.unihalle.informatik.MiToBo.core.datatypes’ and its subpackages. To allow

for easy identification of the datatypes the classnames of the data types in MiToBo always start

with ’MTB’, like in ’MTBRegion2D’ or ’MTBImageDouble’.

There are several reasons why MiToBo implements its own data types and not simply builds

on top of the data types provided by ImageJ. First of all the handling of data objects in ImageJ is

solved only in a rudimentary fashion, at least with regard to the API. As there are only some few

explicit data types apart from images in ImageJ, data access or exchange is often cumbersome.

Accordingly, MiToBo tries to enhance the usability and flexibility of image processing modules by

defining its own data types trying to overcome some limitations nowadays present in ImageJ1.

Furthermore MiToBo defines some specific needs for data types with regard to its feature of

automatic process documentation (cf. Sec. 2.4). Although MiToBo operators in principal support

almost all available kinds of objects as input and output parameters for operators, some few

object types cannot be handled natively within our concept of automatic process documentation.

Among those data types are for example Java’s native data types like int or double, and

wrapper classes like ’Integer’ and ’Double’, i.e. – more generally speaking – all classes that

implement the comparison of objects based on equality of object values. If objects of these

kinds should be used as operator input or output parameters and, in particular, should be

handed over from one operator to another, proper documentation of these data flows in the

processing history can only be guaranteed by wrapping them in data types providing unique

object identification independent of the current value. Accordingly, for some basic and frequently

1Note that also ImageJ 2.0 will provide a larger flexibility in data type handling, in particular more flexible

image data types based on ImgLib2, website http://fiji.sc/ImgLib2, will be available. Support for these extended

image data types in MiToBo is planned.

27

http://fiji.sc/ImgLib2

used data types MiToBo implements such data object wrappers. They can be found in the package

’de.unihalle.informatik.MiToBo.core.datatypes.wrapper’.

Regarding automatic process documentation sometimes proper documentation of operator

configurations requires more than just logging an input or output parameter’s type and current

value. There might be other object parameters that are worth to be documented, e.g., like cer-

tain image-specific properties in case of images. To support the documentation of such object

properties Alida defines a basic data type class supporting management and automated doc-

umentation of additional object properties. This class, ALDData, serves as superclass for most

MiToBo data types and can easily be adopted as basis for new data types.

In the following sections first the properties of Alida’s data type base class ’ALDData’ will be

outlined, and then we will discuss the different features and motivations of the most important

MiToBo data types.

5.1 The Data Type Class ALDData and its Properties

Alida and MiToBo, respectively, allow to represent data and image processing pipelines as graph

data structures, i.e. history graphs. In particular, for each data object being the result of an

analysis process composed of a series of data manipulations by Alida or MiToBo operators,

the history graph allows to backtrace each single intermediate processing step subsuming all

interactions with other objects and the parameter settings of the involved operators. These

data, together with the overall structure of the graph, already draw a detailed picture of the

process pipeline. However, sometimes extended information about manipulated and generated

data objects, i.e. input and output parameters of the operators, are of interest that rise beyond

the default data, like name, object class and package.

Alida defines the super class ’de.unihalle.informatik.Alida.operator.ALDData’ to

support adding such specific information to input and output parameter objects of operators.

The class mainly adds the concept of data type properties to data types derived from this class,

allowing programmers to further characterize objects in the processing history and also in gen-

eral. Properties of operator input and output parameter objects are automatically embedded in

the history graph representation. Each time a data object passes an output port, i.e. is taken

out of an operator, the properties will be associated with the corresponding data port in the

graph. When later on viewing the graph with chipory (cf. Sec. 2.4), the properties can then be

displayed as additional information of the corresponding ports.

A property is basically given as a pair of key and value and is supposed to specify object

characteristics. For example in case of the MiToBo image data types properties subsume infor-

mation like physical image and pixel sizes in all dimensions and the units of the axes. Examplary

key value pairs are shown in Table 5.1.

For setting and getting object properties ’ALDData’ defines two methods:

28

Property Value

location ”/home/user/images/microscope.tif”

StepsizeX ”1”

StepsizeZ ”0.5”

UnitX ”cm”

.

Table 5.1: Examplary properties and its values for an object of type MTBImage.

• public void setProperty(String key, Object obj)

allows to set a property named ’key’ to the string representation of ’obj’

• public String getProperty(String key)

returns the string describing the value of the property named ’key’

Internally the properties are stored in a hashtable of the Java type ’Hashtable<String,

String>’ to be found in the package java.util. Accordingly, keys and values are represented

as strings. Nevertheless, for convenience an arbitrary object can be handed over to the set

routine as shown above. It is automatically converted to a string via its toString() method

that consequently should return an informative description of the object at hand.

The programmer of a new MiToBo data type is in general allowed to choose arbitrary names

for the object properties without any restrictions, apart from one exception. There is one prop-

erty predefined for all Alida and MiToBo data types which is the property denoted ’location’.

The location of a data object defines the place of origin where the data object is coming from.

This can be the place where it is physically stored, i.e. the name of a file on disk or an URL,

or it can point to a virtual location if the object was generated by an operator in the course

of the processing pipeline. Note that although this property is by default attached to all data

types extending ’ALDData’, it is, however, only set automatically for MiToBo images by MiToBo’s

image I/O operators. For other data types setting the location to proper values remains to the

responsibility of the programmer of the specific data type.

To set and read the location of an object the following methods are available:

• public void setLocation(String location)

sets the object location to the given string

• public String getLocation()

returns the current location of the object

Note that there are no automatic checks to ensure that property names are unique. Thus,

if the setProperty() method is called on a property which is already defined its previous value

will be overwritten. This is particularly true for the property ’location’, so this key should

never be used by the programmer within another context than intended to omit confusion.

29

5.2 Images in MiToBo: MTBImage

MiToBo defines its own image classes, namely MTBImage and its subclasses (which can all be

found in the package de.unihalle.informatik.MiToBo.datatypes.images), for the following

reasons:

• extended pixel value precision to support all primitive numeric data types of Java

• easy access to image pixel data, but also to properties like physical pixel size etc.

• additional functionality for MiToBo’s operator concept, i.e. for documentation of specific

image properties

In this section the internals of the MiToBo image data types are explained with more detail.

The section is roughly divided into the following parts. At first, some important details about

the structure of MTBImage are given and available image types are introduced. An overview of

most common methods for creation and manipulation of MTBImages follows. The section is closed

by the description of file I/O for MTBImage objects and how it integrates in MiToBo’s operator

concept.

5.2.1 The Ideas Behind MTBImage

MTBImage was not developed to fully replace ImageJ’s ImagePlus, but rather to wrap the

ImagePlus objects if possible. The most convenient way to create a MTBImage from an ex-

isting ImagePlus object is to simply specify the ImagePlus as input parameter for the method

public static MTBImage.createMTBImage(ImagePlus img).

The created MTBImage holds a reference to that ImagePlus object and explicitly stores the image

size as well as physical pixel size and units if available. For fast pixel access, the MTBImage keeps

direct references to the ImageJ data array or arrays in case of a (hyper-)stack.

When a MTBImage is created from an ImagePlus the instantiated MTBImage must uniquely

be associated with the specified ImagePlus, as no new ImagePlus is created, but the existing

one is used. This case occurs very often, e.g., when an image window is selected from the ImageJ

GUI and used as input for a MiToBo operator or plugin. Therefore an additional reference to

the initially created MTBImage is added to the properties hashtable of the ImagePlus. When an

ImagePlus with a reference to an existing MTBImage is passed to createMTBImage(ImagePlus

img), the existing MTBImage is simply returned.

Another aspect of MTBImage is to think of an ImagePlus as a 5-dimensional image, which is

the highest possible dimensionality of an image in ImageJ (commonly denoted as ’hyperstack’).

To provide easy access to higher dimensional image data methods exist to access data in 5D

hyperstacks, 3D stacks and 2D images, which will be discussed with more detail in Section 5.2.3.

MTBImage objects are designed in a similar way as ImageJ’s ImageProcessor. You usually ref-

erence them by the abstract type MTBImage, while one of its subclasses is actually instantiated.

30

5.2.2 Subclasses of MTBImage: Image Types

One reason to develop a new image type was the limitation of ImageJ images to 32-bit pixel

value precision. The need for a 64-bit precision floating-point image type to store results with

higher accuracy was obvious. Also the lack of a (true) 32-bit integer type in ImageJ can bear

some problems, e.g., when consecutive labels are given to image regions especially in higher

dimensional data.

The concrete subclasses of MTBImage indicate their types by their names. They share the

common prefix ’MTBImage’ followed by the name of the Java data type of their pixel values. The

following list shows the image types available in MiToBo:

• MTBImageByte for byte-type pixel values (unsigned as in ImageJ)

• MTBImageShort for short-type pixel values (unsigned as in ImageJ)

• MTBImageInt for int-type pixel values

• MTBImageFloat for float-type pixel values

• MTBImageDouble for double-type pixel values

• MTBImageRGB for three byte-type pixel values, one for each color channel red, green and

blue (unsigned)

All these image types share the same interface, but can be subdivided into two categories.

On the one hand there are image types that are directly linked to a corresponding ImageJ type

and, thus, simply wrap a corresponding ImagePlus. On the other hander there are types that do

not have a corresponding ImageJ type. If only object references of type MTBImage are used in an

implementation, there is no difference between both classes. However, if functionality directly

related to an ImagePlus object is requested or accessed (e.g., calls to ImageJ functions or the

display of images in ImageJ’s GUI), please keep in mind the differences described in the following

two paragraphs.

MTBImages with corresponding ImageJ types. If values of an MTBImage are changed

which simply wraps the corresponding ImagePlus, the changes are directly applied to that

ImagePlus as well, because MTBImage and ImagePlus share the same data arrays. Table 5.2 lists

the subtypes of MTBImage of this category and their corresponding ImageJ image types.

MTBImages without corresponding ImageJ types. MTBImages which cannot be repre-

sented by corresponding ImageJ types keep their own data arrays and are not linked to an

ImagePlus object upon creation. Images of such data types cannot be instantiated by the

createMTBImage(ImagePlus img) method. These images are usually constructed from scratch

31

MTBImage subtype ImageProcessor of corresponding ImagePlus

MTBImageByte ByteProcessor

MTBImageShort ShortProcessor

MTBImageFloat FloatProcessor

Table 5.2: MTBImage types with corresponding ImageJ types.

by specifying datatype and image size, or by converting another MTBImage to that datatype.

Nevertheless, quite often an ImagePlus object needs to be associated to these images as well,

usually for visualization purposes. MTBImage provides the function getImagePlus() to obtain

such an ImagePlus. The ImagePlus created is firmly associated with the MTBImage. The new

ImagePlus is of that ImageJ type which is supposed to provide the least loss of informa-

tion compared to the MiToBo source image. Note that MTBImage provides its own show() and

updateAndRepaint() methods which already internally call the getImagePlus() method. Con-

sequently, it is not necessary to explicitly get an ImagePlus object for pure displaying purposes.

Important:

Always keep in mind, that a second image data object is kept in memory, once

getImagePlus() or the displaying methods are called!

Table 5.3 describes the MTBImage types that do not have a corresponding ImageJ type and

explains, how they are mapped to ImagePlus.

MTBImage subtype ImageProcessor of created ImagePlus Pixel value conversion

MTBImageInt FloatProcessor cast from int to float

MTBImageDouble FloatProcessor cast from double to float

MTBImageRGB ColorProcessor lossless encoding of three

byte values to ImageJ’s int

color representation

Table 5.3: MTBImage types without corresponding ImageJ types.

5.2.3 Construction, Data Access and Other Useful Methods of MTBImage

This subsection gives a short overview of the methods of MTBImage that are widely used when

working with MiToBo. A full description can be found in the Javadoc API of MiToBo.

At first, methods to create new MTBImages are presented. As there are no visible constructors,

you have to use the following static factory functions:

32

http://www.informatik.uni-halle.de/mitobo/api/index.html

• public static MTBImage createMTBImage(ImagePlus img)

creates a new MTBImage of the correct subtype, which is uniquely linked to the ImagePlus

• public static MTBImage createMTBImage(int sizeX, int sizeY, int sizeZ, int

sizeT, int sizeC, MTBImageType type)

creates a new MTBImage from scratch given the size and the data type of the new image

The following methods can be used to create MTBImages from existing ones:

• MTBImage duplicate()

duplicates a MTBImage.

• MTBImage convertType(MTBImageType type, boolean scaleDown)

creates a MTBImage of the given type from the source image

There are more methods (e.g., to create a new MTBImage only from a part of an existing image),

please refer to the API for the other methods.

Methods for image pixel data access are declared by the MTBImageManipulator interface,

which is implemented by the MTBImage class. The behavior of data access methods is simi-

lar to ImageJ’s getPixel(...) and putPixel(...) methods, which return or take a value

of type ’int’ to cover 8-bit to 32-bit values. MTBImage provides the same methods called

getValueInt(...) and setValueInt(...), with the only difference that ints are casted and

not reinterpreted in case of underlying floating point data types. Keep in mind that methods

dealing with byte types return and take values in the range of [0, 255], and methods dealing

with short types return and take values in the range of [0, 65535], like in ImageJ as well. To

cover floating point types additional methods exist, which return or take double values. These

methods are called getValueDouble(...) and putValueDouble(...). They define the safest

way to go, if you cannot be sure which kind of images is passed to your method.

A word to (hyper-)stacks: ImageJ holds an array of 2D images, no matter if the image is

three-, four- or five-dimensional. 2D images (called slices in the following) in this array (called

stack) are referenced by 1 to N , where N is the total number of slices. MTBImage uses indexing

that every programmer is familiar with, starting from 0 to (N − 1).

Below the methods to access pixel values in MTBImage are reviewed:

• int getValueInt(int x, int y, int z, int t, int c)

returns the pixel value at position (x,y,z,t,c) as int

• void putValueInt(int x, int y, int z, int t, int c, int value)

sets the pixel value at position (x,y,z,t,c) using an int as input value

• double getValueDouble(int x, int y, int z, int t, int c)

returns the pixel value at position (x,y,z,t,c) as double

33

• void putValueDouble(int x, int y, int z, int t, int c, double value)

sets the pixel value at position (x,y,z,t,c) using a double as input value

MTBImageRGB can be modified in the same way as color images in ImageJ, by encoding

the color values as an int value (please refer to the ImageJ documentation for details) and

then passing that int value to the putValueInt() or putValueDouble() method. In addition,

MTBImageRGB further provides methods to get and set values of the different color channels sep-

arately, or even get and work on the MTBImageBytes that represent the separate color channels.

For working with 2D images or 3D stacks there are equivalent methods that take only 2D

(i.e. (x,y)) or 3D (i.e. (x,y,z)) coordinates. You can also use these methods to access certain slices

(2D images) or z-stacks (3D images) of a (hyper-)stack. Therefore you can set internal variables

of MTBImage to specify a “current” slice or z-stack with the following methods:

• void setActualSliceCoords(int z, int t, int c)

sets the coordinates of the “current” slice

• void setActualSliceIndex(int idx)

sets the index of the “current” slice, i.e. the index in the array of slices

• void setActualZStackCoords(int t, int c)

sets the coordinates of the “current” z-stack (leaves “current” slice index unchanged)

The image data should be accessed by the above methods to develop algorithms for generic

image types. The data access methods are kept as fast as possible (e.g., subsume no fur-

ther function calls). However, be aware that for this reason the specified coordinates are not

verified in any way. This means that running out of the data array’s bounds will cause an

ArrayOutOfBoundsException which is not caught by MiToBo.

For fast processing of higher dimensional images, you should also be aware of how to iterate

through the pixels. The usual ordering in ImagePlus hyperstacks is XYCZT, while MiToBo’s

interface order is XYZTC. You should therefore iterate over the pixels of a MTBImage as shown

in the example below:

MTBImage img = MTBImage.createMTBImage(100, 100, 100, 100, 100,

MTBImageType.MTB BYTE);

for (int c = 0; c < img.getSizeC(); c++)

for (int t = 0; t < img.getSizeT(); t++)

for (int z = 0; z < img.getSizeZ(); z++)

for (int y = 0; y < img.getSizeY(); y++)

for (int x = 0; x < img.getSizeX(); x++)

img.putValueInt(x,y,z,t,c,255);

If slicewise processing is possible, you can simply iterate over all slices, which produces less

lines of code and is the fastest way to access all pixels:

34

MTBImage img = MTBImage.createMTBImage(100, 100, 100, 100, 100,

MTBImageType.MTB BYTE);

for (int i = 0; i < img.getSizeStack(); i++) {
img.setActualSliceIndex(i);

for (int y = 0; y < img.getSizeY(); y++)

for (int x = 0; x < img.getSizeX(); x++)

img.putValueInt(x,y,255);

}

5.2.4 MTBImage I/O and the MiToBo Operator Concept

MTBImage extends the ALDData base class for data types and therefore fully integrates in

Alida’s and MiToBo’s operator concept. A difference to other ALDData types is, however,

the file input and output. MTBImage objects can be written to and read from disk using

the ImageWriterMTB and ImageReaderMTB operators, which can be found in the package

de.unihalle.informatik.MiToBo.io.images.

The output of the save operator is comprised of two separate files: one image file in any

supported format, and a file (with ending .ald) that contains the image’s processing history

(see Sec. 2.4). This history file – if present – is automatically loaded when the image is opened

using MiToBo’s ImageReaderMTB operator. The processing history files can be examined using

chipory.

MiToBo relies on the Bio-Formats Library (http://www.loci.wisc.edu/software/

bio-formats) and, thus, allows reading and writing all file formats supported by Bio-Formats.

Bio-Formats is a sophisticated library for image I/O targetting at the various file formats in

biomedical imaging and being compatible with the Open Microscopy Environment (OME) stan-

dard (http://www.openmicroscopy.org).

35

http://www.loci.wisc.edu/software/bio-formats
http://www.loci.wisc.edu/software/bio-formats
http://www.openmicroscopy.org

Chapter 6

Useful Tools and Helper Classes

Alida and MiToBo provide certain classes not directly related to image processing, how-

ever, useful for doing things like time measurements or operator configuration. Such

tools can usually be found in the packages de.unihalle.informatik.Alida.helpers and

de.unihalle.informatik.MiToBo.core.helpers, respectively.

6.1 Operator Configuration

For user specific configuration of operators Alida supports environment variables and

JVM properties, while MiToBo as well supports ImageJ preferences (see also Chap. 3).

For accessing environment variables and properties/preferences Alida provides the class

de.unihalle.informatik.Alida.helpers.ALDEnvironmentConfig which supports easy ac-

cess to these variables and properties. It basically defines the following methods:

• public static void getConfigValue(String operator, String propname)

reads the value of the environment variable or property with name

’ALIDA operator propname’ or ’alida.operator.propname’, respectively; it follows

the formerly defined priority ordering of the different configuration options, i.e. first looks

for an environment variable with the given name, then checks for JVM properties

If not all options should be checked, the following methods can be used alternatively:

• public static String getEnvVarValue(String operator, String envVariable)

This method allows to directly read (only) environment variables.

• public static String getJVMPropValue(String operator, String envVariable)

This method allows to directly read (only) JVM properties.

36

MiToBo includes the class de.unihalle.informatik.MiToBo.core.helpers.MTBEnviron-

mentConfig extending its Alida superclass by additional methods for accessing ImageJ proper-

ties:

• public static String getImageJPropValue(String operator, String envVariable)

This method allows to directly read ImageJ preferences.

• public static void setImageJPref(String operator, String envVar, String val)

This method allows to set a preference in the ImageJ configuration file. It is saved to the

user specific ImageJ configuration file (in ImageJ usually /̃.imagej/IJ Prefs.txt, but this

may be different in ImageJ 2.0). Note that for actually saving the settings it is required to

have the ImageJ GUI open, because only on closing the GUI the preferences are actually

written to the configuration file.

Note that in all cases the prefix ’mitobo.’ for properties and preferences or ’MITOBO ’ for envi-

ronment variables, respectively, is internally added to the variable and property names. Likewise

MiToBo overwrites the superclass methods of Alida as introduced above to automatically set

the MiToBo prefixes in the variable and property names. Anyway, the programmer usually does

not need to pay attention on this feature as long as he or she follows the standard naming

conventions in Alida and MiToBo.

37

Bibliography

[GMP12] M. Glaß, B. Möller, and S. Posch. Scratch assay analysis in imagej. In Proceed-

ings of ImageJ User and Developer Conference, pages 211–214, Mondorf-les-Bains,

Luxembourg, October 2012.

[GMZ+12] M. Glaß, B. Möller, A. Zirkel, K. Wächter, S. Hüttelmaier, and S. Posch. Cell

migration analysis: Segmenting scratch assay images with level sets and support

vector machines. Pattern Recognition, 45(9):3154–3165, September 2012.

[MM12] B. Möller and D. Misiak. Snake optimizer - object segmentation with parametric

active contours in imagej. In Proc. of ImageJ User & Developer Conference, pages

215–217, 222, Mondorf-les-Bains, Luxembourg, October 2012.

38

	Welcome to MiToBo!
	MiToBo's Core: Alida
	MiToBo's Main Features: Operators, History Graphs and User Interfaces
	About this Guide

	I MiToBo: The User's View
	Working with MiToBo
	Running Operators within ImageJ and ImageJ 2.0
	Running Operators from Commandline
	Graphical Workflow Design with Grappa
	Accessing and Exploring History Graphs

	Configuring MiToBo
	Environment Variables and Properties
	List of Important Variables and Properties

	II MiToBo: The Programmer's View
	Programming with MiToBo
	Using Operators in Your Code
	Implementing Operators
	MiToBo and ImageJ Plugins

	MiToBo Data Types
	The Data Type Class ALDData and its Properties
	Images in MiToBo: MTBImage
	The Ideas Behind MTBImage
	Subclasses of MTBImage: Image Types
	Construction, Data Access and Other Useful Methods of MTBImage
	MTBImage I/O and the MiToBo Operator Concept

	Useful Tools and Helper Classes
	Operator Configuration

	Bibliography

