de.unihalle.informatik.MiToBo.tracking.multitarget.distributions.abstracts
Class AbstractAssociationDistribution<S extends Copyable<?>,T extends Copyable<?>>

java.lang.Object
  extended by de.unihalle.informatik.MiToBo.tracking.multitarget.distributions.abstracts.AbstractAssociationDistribution<S,T>
Type Parameters:
S - Type of discrete variables in the multi target observation
T - Type of discrete variables in the multi target state
All Implemented Interfaces:
SamplingDistribution<DataAssociation>
Direct Known Subclasses:
AssociationDistribution

@ALDMetaInfo(export=ALLOWED)
public abstract class AbstractAssociationDistribution<S extends Copyable<?>,T extends Copyable<?>>
extends Object
implements SamplingDistribution<DataAssociation>

Abstract class for association distributions that allow sampling of the association variables for a set of observations in a multi-target tracking framework.

Author:
Oliver Gress

Field Summary
protected  DataAssociationFactory assocfactory
          factory for the data association object
protected  LogProbabilityDensityFunction clutterdistrib
          spatial clutter distribution
protected  double[][] log_pzc
          storage for the log likelihood values of the observations for possible associations to avoid recomputation
protected  int M
          number of observations
protected  int N
          number of targets
protected  LogProbabilityDensityFunction newborndistrib
          spatial distribution of observations from newborn targets
protected  AbstractMultiObservationDistributionIndep<S,T> obsdistrib
          observation/measurement likelihood P(z_m^t | c_m, Z^{1:t-1}, c_{1:m-1}
protected  Random rand
          random generator for sampling
protected  AbstractMultiState<S> Z
          observations
 
Constructor Summary
AbstractAssociationDistribution(Random rand, AbstractMultiState<S> Z, AbstractMultiObservationDistributionIndep<S,T> observationDistrib, LogProbabilityDensityFunction spatialClutterDistrib, LogProbabilityDensityFunction spatialNewbornDistrib, DataAssociationFactory assocFactory)
          Constructor
 
Method Summary
abstract  DataAssociation drawSample()
          Generate a new sample from this density.
abstract  DataAssociation drawSampleDebug(DataAssociation groundtruth, OutputStream ostream)
           
 void setNewObservations(AbstractMultiState<S> Z, AbstractMultiObservationDistributionIndep<S,T> observationDistrib)
           
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Field Detail

rand

protected Random rand
random generator for sampling


obsdistrib

protected AbstractMultiObservationDistributionIndep<S extends Copyable<?>,T extends Copyable<?>> obsdistrib
observation/measurement likelihood P(z_m^t | c_m, Z^{1:t-1}, c_{1:m-1}


clutterdistrib

protected LogProbabilityDensityFunction clutterdistrib
spatial clutter distribution


newborndistrib

protected LogProbabilityDensityFunction newborndistrib
spatial distribution of observations from newborn targets


Z

protected AbstractMultiState<S extends Copyable<?>> Z
observations


assocfactory

protected DataAssociationFactory assocfactory
factory for the data association object


log_pzc

protected double[][] log_pzc
storage for the log likelihood values of the observations for possible associations to avoid recomputation


M

protected int M
number of observations


N

protected int N
number of targets

Constructor Detail

AbstractAssociationDistribution

public AbstractAssociationDistribution(Random rand,
                                       AbstractMultiState<S> Z,
                                       AbstractMultiObservationDistributionIndep<S,T> observationDistrib,
                                       LogProbabilityDensityFunction spatialClutterDistrib,
                                       LogProbabilityDensityFunction spatialNewbornDistrib,
                                       DataAssociationFactory assocFactory)
Constructor

Parameters:
rand -
Z - vector of observations
observationDistrib - observation likelihood that can be evaluated for each observation independently
spatialClutterDistrib -
assocFactory -
Method Detail

setNewObservations

public void setNewObservations(AbstractMultiState<S> Z,
                               AbstractMultiObservationDistributionIndep<S,T> observationDistrib)

drawSample

public abstract DataAssociation drawSample()
Description copied from interface: SamplingDistribution
Generate a new sample from this density. This method should create a new object.

Specified by:
drawSample in interface SamplingDistribution<DataAssociation>
Returns:
new sample object

drawSampleDebug

public abstract DataAssociation drawSampleDebug(DataAssociation groundtruth,
                                                OutputStream ostream)


Copyright © 2010–2015 Martin Luther University Halle-Wittenberg. All rights reserved.