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Abstract

We present some new ideas for dynamic reordering of variables for ordered binary
decision diagrams (8DD). The new method uses the degree of symmetry between two
variables and the conditional informational contribution of variables in order to efficiently
find variable orders minimizing the size of the BDDs.

Remark

As already mentioned in the preface of this anniversary volume, this paper is dedicated to
Prof. Dr. Karl-Heinz Rauchhaus whose 60th birthday took place some weeks ago. As I would
never have believed that this round birthday is celebrated already this year — Karl-Heinz does
not lock his age— we have not yet finished our work. This is the reason the paper closes with
remarks on future work necessary to reach our goal, namely the development of an efficient
dynamic variable reordering heuristic which does not construct temporary BDDs. This future
work will be joint work with Nicole Goéckel and Bernd Becker, both from Freiburg University,
and Laura Litan, Halle University.

*This work was supported in part by DFG grant Mo 645/2-1.
temail: molitor@informatik.uni-halle.de
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1 Introduction

Binary Decision Diagrams (BDD) as a data structure for representation of Boolean functions
were first introduced by Lee (1959) [11] and further popularized by Akers (1978) [1] and
Moret (1982) [16]. In the restricted form of reduced ordered BDDs (ROBDDs), where the
variables are visited in the same order on any path from a root to a leaf in the diagram, they
gained widespread application because ROBDDs are a canonical representation for a fixed
variable order and allow further efficient manipulations [3]. Some fields of application are
logic verification, test generation, fault simulation, and logic synthesis [13, 4].

Most of the algorithms using ROBDDs have running time polynomial in the size of the ROBDDs.
In general, the sizes strongly depend on.the variable order used. Thus, there is a need for
efficient algorithms computing efficient variable orders. As determining the optimal variable
order is NP-complete [3], we have to attack the problem by various heuristic approaches.

The existing heuristic methods for finding good variable orders can be classified into two
categories: initial heuristics which derive an order by inspection of a logic circuit [13, 7, 8]
and dynamic reordering heuristics which try to improve on a given order [9, 19, 6, 2, 5.
Sifting introduced by Rudell [19] has emerged so far as the most successful algorithm for
dynamic reordering of variables. This algorithm is based on finding the optimum position of
a variable assuming all other variables remain fixed. The position of a variable in the order is
determined by moving the variable to all possible positions while keeping the other variables
fixed. However, this approach to dynamical reordering has two drawbacks.

As already observed by Panda and Somenzi [17], one limitation of sifting is that it uses
the absolute position of a variable as the primary objective and only considers the relative
positions of groups of variables indirectly. Recently, it has been shown by Moller et.al. [15]
and Panda et.al. [18] that symmetry properties can be used to efficiently construct good
variable orders for ROBDDs using modified gradual improvement heuristics. The crucial point
is to locate the partial symmetric variables side by side and to treat them as fixed block. This
results in ’symmetric sifting’ which sifts the variables of a symmetric group simultanecusly.
Regular sifting usually puts symmetric variables together in the order, but the symmetric
groups tend to be in suboptimal positions. The suboptimal solutions result from the fact that
regular sifting is unable to recognize that the variables of a symmetric group have a strong
attraction to each other and should be shifted together. When a variable of a symmetric group
is sifted by regular sifting, it is likely to return to its initial position due to the attraction of
the other variables of the group.

The other drawback is the fact that both regular sifting and symmetric sifting construct as
many as n? different ROBDDs as, in every step, the costs of the corresponding ROBDDs, i.e.,
the total number of inner nodes, have to be computed. However, ROBDD construction can
often be rather time consuming.

In this paper we present some new ideas in order to attack the second drawback. We try to
develop a dynamic reordering heuristic which has not to construct any temporary ROBDD.
We introduce some information-theoretical concepts, which also consider symmetries, that
can lead to new, effective and practical ordering algorithms.

The paper is structured as follows. In the next section we briefly review some definitions. .
Section 3 presents the new approach for dynamic variable reordering. The paper closes with
some remarks concerning future work necessary to reach our goal.
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2 Preliminaries

This brief review is taken in part from the paper of Panda and Somenzi [17] and Méller et.al.
[14].

2.1 Cofactors and Shannon Decompositon

Let f be a completely specified Boolean function over a set of input variables X = {z1,...,z.}.
For a constant b € {0, 1} and a variable z; € X the (Shannon) cofactor f|,.=s of f with respect
to z; = b is defined by

f I.'.I:i=b (-Tl, e ,mn) = f(ml, cvesTi-1,b, Titly:-- ,En)-

Instead of f |z,=0 and f|z;,=1 we also write f;; and fy, respectively. The cofactor of f with
respect to a set of variables and constants is defined inductively.

It is easy to verify that the equation
f=a; fou+ai foy

holds, where z} is the negation of literal z;. The equation is called Shannon decomposition
in literature. It is the basis of the representation of Boolean functions by Binary Decision
Diagrams.

2.2 Binary Decision Diagrams

Binary Decision Diagrams {BDDs) are an efficient data structure for the representation of logic
functions. A BDD representing a set of Boolean functions {fi,..., fm} is a directed acyclic
graph (DAG) with m roots —one for each function— and two leaves. One leaf represents the
constant 1 and the other represents the constant 0. An internal node N of the DAG is labeled
with a variable z; and has two children, T' and E. The function represented by N, denoted
by fn is given by fx = z; - fr + z; - fr.

It is customary to impose the restriction that the variables are ordered along all paths of
the DAG in the same way, that no isomorphic subgraphs exist, and that there is no internal
node N with fr = fg. Under these restrictions, BDDs provide a canonical representation
of logic functions. Especially, fr from above equals the positive cofactor f;, and fr equals
the negative cofactor f,». Note that canonicity makes BDDs suitable for logic verification
whenever the BDD of a Boolean function can be constructed in reasonable time.

It is also customary to attach a complementary attribute to arcs in the DAG. Proper use
of complementation attributes insures that complementary functions are represented by the
same DAG and that canonicity is preserved.

2.3 Symmetric variables

Symmetry plays a crucial role in our new approach for dynamic variable reordering. We
consider symmetric Boolean functions as originally defined by Shannon [20, 21] considering
symmetry with complementation, too.

Definition 1 A Boolean function f(z1,...,%n)} is symmetric in x; and z; if the interchange

of z; and z; leaves the function identically the same; f is symmetric in z; and :1:; (alternatively
' e L _ ' S .

z; and xj), if the interchange of z; and z; leaves the function identically the same.



4 Paul Molitor

It is well known that

Theorem 1 (Naive symmetry check) f is symmetric in z; and z; if and only if f, » =
i
.fz’.,:cj-

The naive symmetry check is very popular, but a handicap of it is that temporary ROBDDs
have to be created if z; does not directly follow z; or vice versa in the variable order of the
initial ROBDD. The creation of these ROBDDs may be very time consuming. Moller et al. [14]
have presented methods to accelerate symmetry detection by detecting as many asymmetric
pairs of variables as possible by structural properties of the initial ROBDD to be able to
avoid the naive symmetry check for those pairs. These methods reduce the running time for
symmetry detection by a factor of about 15 compared to the naive method.

3 The crucial idea of the new approach

The crucial idea of our new variable ordering heuristic is to define an attraction measure
A(f,z:i,7;) (or repulsion measure R(f,z;,z;)) between any two variables z; and z; of a
Boolean function f such that

n-1 n ; 1
Z Z .A(f,ww(z)ixﬂ(ﬂ)) (1)

oS el i)
is large if and only if the variable order

(mﬂ(l)a Lr(2)s- s Ta(i)r Ta(i+1)s- -+ -T'n'(n))

defined by permutation 7 : {0,1,...,n} = {0,...,n} is efficient with respect to the size of
the corresponding ROBDD. By function ¢ we can take care that variables with high repulsion
are placed at very different positions.

Note that we have introduced a new variable zg. We need it in order to be able to attract a
variable to the beginning of the variable order. Thus the permutations 7 we consider all have
the property 7(0) = 0.

4 Some attraction measures

In this section we present and discuss some attraction measures which probably meet the
condition formulated in Section 3.

4.1 Informational contribution of a variable

The informational contribution of a variable z; has been defined by Jain et.al. [10] as

. ( ) m(.fz;@f:c;)

ic(z;) 1= ————*t

o m(f)
where m(g) denotes the total number of true minterms of the Boolean function g. The greater
the informational contribution of z;, the larger is the total number of paths from the root to
a leaf of the ROBDD sensitive to variable z;.
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Jain et.al. conjecture that it is a good idea to select the variable that has the greatest in-
formational contribution as the root of the ROBDD, i.e., ordering the variables according to
decreasing informational contribution. The conjecture of Jain et.al. has not been proven
correct by experiments. We conjecture that one has to order according to increasing infor-
mational contribution, because variables with poor informational contribution do not widen
the ROBDD very much. This raises hope that the breadth of the ROBDD increases only very
slowly. This idea results in the definition of a first attraction measure

1—idc(z;) ifj=0
Ao(fizi,z5) =< 1—ic(z;) ifi=0
0 else.

Note that, if variable z; has poor informational contribution, it is strongly attracted to variable
xp, 1., to the beginning of the variable order.

4.2 Conditional informational contribution of a variable

Another conjecture is that variable z; should be placed close to z; if the conditional infor-
mational contribution ic(z; | z;) of z; knowing the value of x; is small. This idea can be
integrated in the attraction measure Ay defined so far and we obtain:

1 —ic(z;) ifj=0
1 —ic(z;) ifi=0

Ai(f, zi,z5) = - % (m(fzim,-eaf:,.zg) m(fr_;zjﬂafzizf,-)) else.

) + m(F)

Note that, if the conditional informational contribution z; knowing z; is logic 1 is 0, then the
attraction of x; to z; is at least % If the conditional informational contribution of z; is poor
(great) in both cases, the attraction of z; to z; tends to 1 (0).

4.3 Degree of symmetry between two variables

In order to take into account that partial symmetric variables tend to form blocks in optimal
variable orders we need an attraction measure expressing this fact. The definition

m (fm.-:c; @ f:n::r_,) m (.fm,-mj & f:c:m;) }

m(f) ’ m (f)

will probably do the job. Note that if f is partial symmetric in x; and z; or partial symmetric

in z; and m;-, the attraction Ag(f,z;, ;) is maximal, i.e., equals 1. If f is almost partial
symmetric in z; and z; or z; and :1:;., the attraction will be about 1.

Ax(foxiyzi) =1— min{

4.4 Overall attraction measure

The overall attraction measure can now be defined by
A(.f! Zi, xJ) = max {cl : -Al(fs Iiyzj), Ca AQ(fs T, -TJ)}

for some constants ¢ and ca.
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5 Future work

Of course there are a lot of open problems which have to be solved in order to reach the goal.

First we must show that the attraction measure proposed in Section 4.4 has the property
formulated in Section 3, i.e., that sum (1) is large if and only if 7 is an efficient variable order
with respect to the size of the corresponding ROBDD.

After having proven this by experiments, we have to attack two further problemé in order to
really obtain an efficient heuristic:

e We have to find methods which only use structural properties of the initial ROBDD in
order to well approzimate the attraction measure.

Computing the cofactor of a Boolean function f with respect to variable z; requires
temporary ROBDDS if z; is not the root variable of f. Thus in order to accelerate the
computation of the attraction measure we have to develop quantitative methods which
only uses structural properties of the initial ROBDD. We will try to generalize for our
purpose the qualitative methods for detection of symmetries presented in [14].

o We have to generalize the method proposed to sets of functions.

The attraction measures above are defined so far only for single valued Boolean func-
tions. However in practice, we deal with multioutput Boolean functions which are
represented by ROBDDs with multiple roots, i.e., we have to find one variable order for
all the single outputs. Is there any way to generalize the attraction measure presented
so far in order to be able to efficiently apply them to sets of Boolean functions?

To understand from the theoretical point of view why some variable orders are efficient, we
have to prove (least) upper bounds for the sizes of the ROBDDs of Boolean functions with
specific attractions. Here, we will try to generalize the results proven in [12].
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