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The infinite or ω-power is one of the basic operations to associate with a language
of finite words (a finitary language) an ω-language.
It plays a crucial role in the characterization of regular and of context-free ω-lan-
guages, that is, ω-languages accepted by (nondeterministic) finite or pushdown au-
tomata, respectively (cf. the surveys [St87a, Th90]). But in connection with the de-
terminization of finite ω-automata it turned out that the properties of the ω-power
are remarkable elusive; resulting in the well-known complicated proof of MAC-
NAUGHTON’s theorem [MN66]. Later work [TB70, Ei74, Ch74] showed a connec-
tion between the ω-power of regular ω-languages and a limit operation (called here
δ-limit) transferring languages to ω-languages. It was, therefore, asked in [Ch74] for
more transparent relationships between the ω-power and the δ-limit of languages.
It turned out that this δ-limit is a useful tool in translating the finite to the infinite
behaviour of deterministic accepting devices (cf. [Li76, CG78, St87a, Th90, EH93]).

As it was mentioned above ω-power languages play a crucial role in the characteri-
zation of ω-languages accepted by nondeterministic finite or push-down automata.
In fact, they are useful in general for the characterization of ω-languages accepted
by empty storage (cf. [St77]).

Therefore, a general relationship between ω-power and δ-limit could hint for in-
stances where ω-languages accepted nondeterministically via empty-storage-accept-
ance could be likewise accepted deterministically.

In contrast to the ω-power the δ-limit yields, similar to the adherence of languages,
a transparent description of the ω-language derived from the language. Particu-
larly remarkable are the facts that in terms of the natural CANTOR-topology of the
space of ω-words it describes exactly Gδ-sets (This being also the reason for calling
it δ-limit.) and, moreover, it allows for a specification of the topological (BOREL-)
subclasses of Gδ in terms of the underlying (preimage-)languages (cf. [St87b]).

No such properties, however, are known in general for ω-power languages. Except
for the representation as an infinite product, the ω-power of a language W , W ω,
is known to be the maximum solution of a linear homogenuous equation in one
variable (see Eq. (H ) below). The disadvantage of those equations is, in contrast
to the language case, that they are not uniquely solvable in ω-languages. This is,
however, no obstacle to obtain an axiom system for ω-regular expressions similar
to the one for regular expressions given by A. SALOMAA in [Sa66]. K. WAGNER

[Wa76] showed that the maximum solution principle of [Re72, St72] is sufficient for
this purpose.1

∗email staiger@informatik.uni-halle.de
1Other axiom systems for ω-regular expressions were given in [DK84, II84]
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Therefore, we start our investigations with the consideration of linear equations for
ω-languages. After introducing some necessary notation in the first section we de-
rive the above mentioned maximum solution principle and some conditions under
which equations are equivalent, that is, have the same set of solutions.

In the second section we consider the structure of the set of solutions of a linear
equation. To this end we introduce the notion of atomic solutions, that is, nonempty
solutions which are in some sense indivisible. Section 3 is devoted to the case when
a linear equation has a finite-state or even regular solution. This concludes our
investigations on solutions of linear equations, and we turn to the consideration
of ω-power languages.

In the fourt part we deal with relationships between the operations of ω-power and
δ-limit. Thereby it is natural to consider also toplogical properties of ω-power lan-
guages. It turns out that already for topological reasons the δ-limit is not able to
describe all ω-power languages.
Moreover, we show which ω-power languages can be found in several low level
BOREL-classes (below the class Gδ). Here the behaviour of ω-power languages is
in contrast to the class of so-called strongly-connected ω-languages (cf. [St80a, 83]).
Strongly-connected ω-languages are already closed if they are in the BOREL-class
Fσ ∩ Gδ, whereas we derive as well examples of open nonclosed as examples of
nonopen and nonclosed ω-power languages in Fσ ∩Gδ.

The final section of this paper deals with another topological property of ω-power
languages. It was observed in [St76, 80b] that finite-state (or regular) ω-languages
which are nowhere dense in CANTOR-space lack some subword (finite pattern).
Here we generalize this result to finite-state ω-languages nowhere dense in an ω-
power language.

1 Linear Equations

In this section we introduce some notation used throughout the paper. Further we
give some basic results from the theory of ω-languages which are necessary for
our investigations. Additional information on the theory of ω-languages can be
obtained from the quoted above papers.

After these preparations we introduce linear equations for ω-languages and show
how to solve them. An especially interesting way of solving is the maximum solu-
tion principle which will be illustrated at the end of this section by two examples.
Moreover, we derive a condition under which equations have the same set of solu-
tions.

By IN = {0,1,2, . . .}we denote the set of natural numbers. We consider the space Xω

of infinite strings (sequences) on a finite alphabet of cardinality card X ≥ 2. By X∗ we
denote the set (monoid) of finite strings (words) on X , including the empty word e.
For w ∈ X∗ and b ∈ X∗∪Xω let w ·b be their concatenation. This concatenation product
extends in an obvious way to subsets W ⊆ X∗ and B ⊆ X∗∪Xω. As usual we denote
subsets of X∗ as languages and subsets of Xω as ω-languages. For a language W ⊆ X∗

letW 0 := {e} andW i+1 :=W i ·W . ThenW ∗ :=
⋃

i∈IN
W i is the submonoid of X∗ generated
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byW , and byW ω we denote the set of infinite strings formed by concatenating inW .
Furthermore |w| is the length of the word w ∈ X∗.

A(B) := {w : w ∈ X∗∧∃b(b ∈ X∗∪Xω∧w ·b ∈ B)} is the set of all initial words (prefixes)
of the set B ⊆ X∗ ∪Xω. For the sake of brevity we shall write w ·B,W · b and A(b)
instead of {w} ·B,W · {b} and A({b}) respectively, and we shall abbreviate the fact
that w is an initial word of b, that is w∈A(b), by w⊑ b. Moreover, we call B⊆ X∗∪Xω

prefix-free iff w ⊑ b and w,b ∈ B imply w = b, a prefix-free subset C ⊆ X∗ \ {e} is also
called a prefix code.

We consider Xω as a topological space with the basis (w ·Xω)w∈X∗. Since X is finite,
this topological space is homeomorphic to the CANTOR discontinuum, hence com-
pact. In the asequel we shall refer to the space Xω also as CANTOR-space. Open sets
in Xω are of the form W ·Xω whereW ⊆ X∗. From this follows that a subset F ∈ Xω is
closed iff A(β)⊆A(F) implies β ∈ F .

The topological closure of subset F ⊆ Xω, that is, the smallest closed subset of (Xω,ρ)
containing F is denoted by C (F). It holds C (F) = {ξ : A(ξ)⊆A(F)}.

Having defined open and closed sets in Xω, we proceed to the next classes of the
Borel hierarchy (cf. [Ku66]):

Fσ is the set of countable unions of closed subsets of Xω, and

Gδ is the set of countable intersections of open subsets of Xω.

For W ⊆ X∗ \{e} and E ⊆ Xω we consider the equations

T =W ·T (H)

and
T =W ·T ∪E (I)

which will be referred to as the homogenuous and inhomogenuous equations, respec-
tively.

It was already observed by TRAKHTENBROT [Tr62] that the simple equation T =X ·T
has uncountably many ω-languages as solutions (cf. also [St83]). Therefore, in this
section and the subsequent ones we address the problem which subsets of Xω are
solutions of the given equations.

From [St72] and [Re72] the following simple properties are known. LetW ⊆ X∗ \{e}
and E ⊆ Xω. Then

F ⊆W ·W ∗ ·F implies F ⊆W ω , (1)

W ·F ∪E ⊆ F implies W ∗ ·E ⊆W ∗ ·F ⊆ F , (2)

W ·F ∪E = F implies W ∗ ·E ⊆ F ⊆W ω ∪W ∗ ·E , and (3)

If F =W ·F then F ∪W ∗ ·E is a solution of Eq. ( I ). (4)

Moreover, it was observed that W ∗ ·E as well as W ω ∪W ∗ ·E are solutions of Eq. ( I ),
according to Eq. (3) they are the minimum and maximum solution, respectively. As a
corollary to the above properties we get the maximum solution principle which has
been proved useful in establishing identities involving ω-power languages W ω (e.g.
in [Lt88, 91a, 91b, St80a, Wa76].
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Corollary 1 (Maximum solution principle)
Let F ⊆ Xω satisfy Eq. ( I ), and let W ω ⊆ F . Then

F =W ω ∪W ∗ ·E .

As a further corollary to Eq. (1) we get

Corollary 2 If F ⊆W ·F thenW ∗ ·F is the minimum solution of the homogenuous equation
Eq. (H ) containing F .

This yields the following relation between the solutions of the inhomogenuous and
homogenuous converse to Eq. (4):

Lemma 3 If F = W ·F ∪E then F ′ := W ∗ · (F \W ∗ ·E) is the minimum solution of the
homogenuous equation Eq. (H ) such that F = F ′∪W ∗ ·E.

Proof. We have F \W ∗ ·E = (W ·F ∪E)\W ∗ ·E =W ·F \W ∗ ·E ⊆W · (F \W ∗ ·E), and
the assertion is immediate with Corollary 2. ❏

Next we consider pairs of coefficients (W,E) and (V,E ′) to be equivalent if the inho-
mogenuous equations T =W ·T ∪E and T =V ·T ∪E ′ have the same set of solutions.

We obtain the following.

Lemma 4 Let W ∪V ⊆ X∗ \ {e}, W ∗ = V ∗, and W ∗ ·E = V ∗ ·E ′. Then (W,E) and (V,E ′)
are equivalent.

Proof. If F is a solution of Eq. ( I ) then W ∗ ·F = F . This together with the inclusion
W ∗ ·E ⊆ F and the identity W ∗ = (W ·W∗)∗ yields F =W ·W ∗ ·F ∪W ∗ ·E.

Conversely, if F =W ·W ∗ ·F ∪W ∗ ·E =W · (W∗ ·F ∪W ∗ ·E)∪E in virtue of W ∗ = (W ·
W ∗)∗ we have F =W ∗ ·F andW ∗ ·E ⊆ F . Thus F =W ·(W ∗ ·F ∪W ∗ ·E)∪E =W ·F ∪E,
and (W,E) is equivalent to (W ·W ∗,W ∗ ·E). In the same way (V,E ′) is equivalent to
(V ·V ∗,V ∗ ·E ′), and the assertion follows. ❏

Corollary 5 Let e /∈W andW n ⊆V ⊆W ·W ∗. Then F =W ·F ∪E implies F =V ·F ∪W ∗ ·
E.

Proof. From F =W ·F ∪E we have the identity F =W ·F ∪W ∗ ·E. Inserting the right
hand side of this identity n times into itself yields F =W n ·F ∪W ∗ ·E. On the other
hand F =W ·W∗ ·F ∪W ∗ ·E, and the assertion follows. ❏

The converse statement, however, is not valid. Consider e.g. W := {a,b},V := {a,b}2,
F :=V ∗ · {aa,ba}ω. Then F =V ·F but F 6= {a,b} ·F because (ab)ω /∈ F .

As it was announced above we conclude this section with two instances whose
proofs show the usefulness of the simple properties derived in Eqs. (1) . . . (4) and
Corollary 1 when solving equations like Eq. (H ) or Eq. ( I ).

To every instance we need some preparatory definitions.
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As in [Lt88] or [St80] we define the stabilizer of an ω-language E ⊆ Xω,

Stab(E) := {w : w ∈A(E)\{e}∧w ·E ⊆ E} . (5)

Since C (w ·E) = w ·C (E), we have Stab(E) ⊆ Stab(C (E)). Moreover, the stabilizer of
an ω-language E ⊆ Xω, Stab(E), is closed under concatenation, that is, is a subsemi-
group of X∗.

Obviously, the stabilizer of an ω-power languageW ω satisfiesW ∗ \{e} ⊆ Stab(W ω)⊆
Stab(C (W ω))⊆A(W ω) and Stab(W ω) ·W ω =W ω.

We obtain a result which is similar to the construction of a minimal generator of the
semigroup W ∗, (W \{e})\ ((W \{e}) · (W∗ \{e})).

Theorem 6 ([Lt88, Proposition IV.3]2) LetW ⊆X∗\{e} and letV :=W \(W ·Stab(W ω)).
Then V ω =W ω.

Proof. The inclusion V ω ⊆W ω follows from V ⊆W .

On the other hand, we haveV ·Stab(W ω)⊇W ∗\{e}. ThusV ·W ω =V ·Stab(W ω) ·W ω ⊇
W ∗ ·W ω =W ω, and Eq. (1) implies W ω ⊆V ω. ❏

It should be noted that, in contrast to the minimal generator of W ∗ the language
V :=W \ (W ·Stab(W ω)) defined in Theorem 6 need not be a minimal ω-generator of
W ω contained in W ⊆ X∗ \ {e}. In [Lt88, Example IV.4] and [Lt91a, Example 1] it is
shown that W = a ·b∗∪ba ·b∗ satisfies W =W \ (W ·Stab(W ω)), but W ω = (W \{ab})ω.

Next we derive an instance where the maximum solution principle is used. We give
an explicit formula for the closure of W ω, C (W ω).
To this end let lsW := {ξ : ξ ∈ Xω ∧A(ξ) ⊆ A(W)} be the adherence of the language
W ⊆ X∗. Then it is known that C (W ·E) =W ·C (E)∪ lsW when W ⊆ X∗, E ⊆ Xω and
E 6= /0. We obtain the formula

C (W ω) =W ω ∪W ∗ · lsW . (6)

Proof. Since C (W ω) is the closure of W ω, we have C (W ω) ⊇W ω. Now W ω =W ·W ω,
and from the formula mentioned above we get C (W ω) = C (W ·W ω) = W ·C (W ω)∪
lsW . Our assertion follows from Corollary 1. ❏

2 Atomic solutions of the homogenuous equation

In view of Eq. (4) and Lemma 3 every solution of the inhomogenuous equation can
be obtained by adding W ∗ ·E to a solution of the homogenuous equation. In this
section we, therefore, analyze the structure of the set of solutions of Eq. (H ).

To this end we consider nonempty solutions of which are in some sense minimal.
We call a nonempty solution S of the homogenuous equation atomic if it does not
contain two nonempty disjoint solutions of Eq. (H ). It is obvious that a nonempty

2cf. also [Lt91a, Lemma 2] or [Lt91b, Lemma 2.1].
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and minimal (with respect to set inclusion) solution of Eq. (H ) is atomic, but as we
shall see below the converse is not true.

In order to construct atomic solutions we consider so-called W -factorizations of ω-
words ξ ∈ W ω. A W -factorization is a factorization ξ = w0 ·w1 · · ·wi · · · where wi ∈
W \{e}.

Theorem 7 For every β ∈W ω there is an atomic solution of Eq. (H ) containing β.

Proof. Let β=w0 ·w1 · · ·wi · · · be aW -factorization of β and define β j :=w j ·w j+1 · · ·wi · · ·,
that is, β0 := β and β j = w j ·β j+1.

It is easy to verify that S := W ∗ · {β j : j ∈ IN} is a solution of Eq. (H ). It remains to
show that S is atomic. Assume S1,S2 ⊆ S, S1∩S2 = /0 and W ·Sm = Sm (m = 1,2).

If {β j : j ∈ IN} ⊆ S1 then S2 = /0. So let β jm ∈ Sm and j2 < j1 (say). Since W ∗ ·S1 = S1, it
follows β j2 ∈ S1, a contradiction to S1∩S2 = /0. ❏

The proof of Theorem 7 provides us with amethod for constructing atomic solutions
of the homogenuous equation.

Corollary 8 Let β=w0 ·w1 · · ·wi · · · be aW -factorization of β. Then for every infinite subset
M ⊆ IN the set SM :=W ∗ · {β j : j ∈ M} is a solution of Eq. (H ).

From the above described construction of atomic solutions the following description
of arbitrary solutions is obvious.

Lemma 9 If F =W ·F then F is the union of all atomic solutions of Eq. (H ) contained in
F .

Though it is not easy, in general, to obtain a concise description of atomic solutions
containing β ∈W ω, for ultimately periodic ω-words we have the following.

Property 10 Let β ∈ Xω be ultimately periodic. Then every atomic solution of Eq. (H )
containing β has the form W ∗ · vω for an appropriate v ∈ W ∗ \ {e}. Conversely, every ω-
language W ∗ · vω where v ∈W ∗ \{e} is an atomic solution of Eq. (H ).

Proof. Let β = w ·uω, and let β = w0 ·w1 · · ·wi · · · be a W -factorization of β. Then there
are infinitely many j ∈ IN such that β j = v̂ω for some v̂ 6= e. Following Corollary 8 the
set W ∗ · v̂ω is an atomic solution of Eq. (H ).

We have still to show that v̂ω = vω for some v ∈W ∗ \ {e}. To this end observe that if
β j = βk = v̂ω and j < k then β j = v ·βk for an appropriate v ∈W ∗ \{e}, whence β j = vω.

The second assertion is obvious. ❏

Atomic solutions containing a given β, however, may be neitherminimal nor unique.
Lemma 9 and the proof of Theorem 7 yield only the following sufficient conditions.

Property 11 If S is a unique atomic solution containing an ω-word β then S is the unique
minimal solution containing β.

Property 12 If β ∈W ω has a unique W -factorization β = w0 ·w1 · . . . ·wi · . . . (wi ∈W ) then
the atomic solution of Eq. (H ) containing β is unique.
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Remark: The latter condition is not necessary. Consider e.g. the suffix code C :=
{b,ba,aa}. Here baω has two C-factorizations baω = b · aa · aa · . . . = ba · aa · . . . but
C∗ ·aω is the unique atomic solution of the equation T =C ·T containing baω.

The following example shows that atomic solutions containing a particular ω-word
β may not be unique, even if W is a code3 and β is ultimately periodic. In addition
this example verifies that, though β has more than one W -factorizations all atomic
solutions containing β are minimal.

Example 1 Consider the suffix codeW1 = {ab,ba,baa}, and let β1 := baa(ba)ω = ba(ab)ω.
By Property 10, W ∗

1 · (ba)ω and W ∗
1 · (ab)ω are the only atomic solutions containing β1.

Obviously they are incomparable, thus minimal.

Their intersection W ∗
1 · (ba)ω∩W ∗

1 · (ab)ω =W ∗
1 ·β1 does not contain a solution of Eq. (H ),

because neither (ab)ω ∈W ∗
1 ·β1 nor (ba)ω ∈W ∗

1 ·β1.

We add an example that atomic solutions need not be minimal.

Example 2 LetW2 := {aba,ba,baa} (which is not a code). Then β2 := (baa)ω = ba ·(aba)ω

yields the following two atomic solutions W ∗
2 · (baa)ω and W ∗

2 · (aba)ω. One easily verifies
that (aba)ω /∈W ∗

2 · (baa)ω whereas (baa)ω ∈W ∗
2 · (aba)ω. HenceW ∗

2 · (baa)ω ⊂W ∗
2 · (aba)ω,

and the latter atomic solution is not a minimal one.

Atomic solutions are countable subsets of Xω, hence, as countable unions of closed
sets, Fσ-sets. Thus Eq. (H ) has (if ever) among its nonempty solutions always Fσ-
sets. Topologically simpler sets than Fσ-sets are closed sets. But for Eq. ( I ) and
Eq. (H ) it turns out that they have at most one nonempty closed set as solution.

Lemma 13 Let W 6= /0. Then Eq. ( I ) has a nonempty closed solution iff lsW ∪ C (E) ⊆
W ω ∪W ∗ ·E, and moreover this solution is the maximum solution.

Proof. First observe that similar to Eq. (6) the closure of the maximum solution
W ω∪W ∗ ·E is calculated as C (W ω∪W ∗ ·E) =W ω∪W ∗ · lsW ∪W ∗ ·C (E), and it satisfies
C (W ω ∪W ∗ ·E)⊆W ω ∪W ∗ ·E if lsW ∪C (E)⊆W ω ∪W ∗ ·E.

On the other hand if W ω ∪W ∗ ·E = C (W ω ∪W ∗ ·E) = W ω ∪W ∗ · lsW ∪W ∗ ·C (E) the
condition is trivially satisfied.

The second assertion is obvious from W ω ⊆ C (W ∗ ·F) whenever W ∗ ·F is nonempty.
❏

As a corollary we obtain a necessary and sufficient condition for an ω-power lan-
guage W ω to be closed.

Corollary 14 An ω-power language W ω ⊆ Xω is closed if and only if lsW ⊆W ω.

We conclude this section with a lower estimate for the possible number of solutions
of the inhomgenuous equation Eq. ( I ). To this end we derive an intersection prop-
erty.

3That is, for all words v1, . . . ,vℓ,w1, . . . ,wm ∈ W the identity v1 · · ·vℓ = w1 · · ·wm implies ℓ = m and
vi = wi (i = 1, . . . , ℓ).
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Lemma 15 Let F = V ·F and E = W ·E where V ⊆ W ∗ \ {e}. If every ω-word ξ ∈ E ∩F
has at most one W -factorization then F ∩E =V · (F ∩E).

Proof. Since V ⊆ W ∗, the inclusion V · (F ∩E) ⊆ F ∩E is immediate. To prove the
converse we use that every β ∈ F ∩E has a unique W -factorization. First F = V ·F
implies that β = v ·ξ for some v ∈V ⊆W ∗ and ξ ∈ F ⊆W ω.

Let v = v1 · · ·vn and ξ = w0 ·w1 · · ·wi · · · where v j,wi ∈ W \ {e}. Thus β = v1 · · ·vn ·w0 ·
w1 · · ·wi · · · is the unique W -factorization of β. As v ∈ W n and E = W n ·E, it follows
that ξ ∈ E. Hence β = v ·ξ ∈V · (E ∩F). ❏

As a second preparationwe derive TRAKHTENBROT’s [Tr62] description of all atomic
solutions of the equation T = X ·T .

Example 3 (Atomic solutions of T = X ·T ) Utilizing the technique of the proof of Theo-
rem 7 we observe that for the equation T = X ·T and β ∈ Xω it holds {βi : i ∈ IN} = E(β)
where E(β) is the set of all tails of β. Hence Fβ := X∗ ·E(β) is the (unique, according to
Property 12) atomic solution of T = X ·T containing β.
Consequently, either Fβ = Fξ or Fβ ∩Fξ = /0.

Theorem 16 If the cardinality of the set W ω \W ∗ ·E satisfies cardW ω \W ∗ ·E = 2ℵ0 then

Eq. ( I ) has 22ℵ0 solutions.

Proof. Clearly, Eq. ( I ) can have no more than 22ℵ0 solutions.

According to Lemma 3 the set F ′ := W ∗ · (W ω \W ∗ ·E) is the minimum solution of
Eq. (H ) such that W ω = F ′ ∪W ∗ · E. Now applying Lemma 15 and the fact that
each one of the sets Fβ defined in Example 3 is countable we obtain that the set
{F ′ ∩ Fβ : β ∈ W ω \W ∗ · E} is an uncountable family of pairwise disjoint solutions
of Eq. (H ). Hence, Eq. (H ) has all unions

⋃
β∈M(F ′ ∩Fβ) where M ⊆ W ω \W ∗ ·E as

solutions, that is, it has at least 22ℵ0 solutions. These solutions differ already on
W ω \W ∗ ·E which proves that the family of all unions

⋃
β∈M(F ′ ∩Fβ)∪W ∗ ·E pro-

vides 22ℵ0 solutions of Eq. ( I ). ❏

3 Regular and finite-state solutions

In this section we consider solutions of our equation which are closely related to the
well-known class of regular ω-languages. To this end we introduce the following.

For a set B ⊆ X∗ ∪Xω we define the state B/w of B generated by the word w ∈ X∗

as B/w := {b : w · b ∈ B}, and we call a set B finite-state if the number of different
states B/w (w ∈ X∗) is finite. Finite-state languages W ⊆ X∗ are also known as regular
languages. Already TRACHTENBROT [Tr62] (cf. also [St83]) observed that the class
of finite-state ω-languages is much larger than the class of ω-languages accepted by
finite automata (so-called regular ω-languages). An ω-language F ⊆ Xω is referred
to as regular provided there are regular languages Wi,Vi ⊆ X∗ (i = 1, . . . ,n) such that
F =

⋃n
i=1Wi ·V ω

i .
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LITOVSKY and TIMMERMAN [LT87] have shown that a regular ω-power language
W ω is already generated by a regular language L. In this section we consider the
related case when the coefficients W and E of the inhomogenuous equation Eq. ( I )
are finite-state or even regular. Our general result follows.

Theorem 17 If W and E are finite-state then every solution of Eq. ( I ) is also finite-state.

Proof. First we mention that W ∗ ·E is also finite-state if W and E are finite-state.

Let W (n) := {w : w ∈ W ∗ ∧ |w| ≥ n}. In view of Corollary 5 F = W · F ∪ E implies
F =W (n) ·F ∪W ∗ ·E for arbitrary n ∈ IN.

Next, we use the property that W (|w|)/w = W ∗/w. Then F/w = (W (|w|) ·F)/w∪ (W ∗ ·
E)/w = (W ∗/w) ·F ∪ (W ∗ ·E)/w. Thus the number of states of F is not larger than the
product of the number of states of W ∗ and W ∗ ·E. ❏

In the rest of this section we verify that Theorem 17 does not hold in the case of
regular sets, and that in order to have only finite-state solutions it is not sufficient to
have one finite-state solution.

The first fact is easily verified by the equation F = X ·F which has 22ℵ0 solutions.
Consequently, most of them cannot be regular.

Next we give an equation which has a regular minimum solution but its maximum
solution is not finite-state.

Example 4 LetW4 := {an! ·b : n∈ IN} and E4 := {a,b}∗ ·aω. Then Eq. ( I ) has the minimum
solutionW ∗

4 ·E4 = E4 which is regular, but its maximum solutionW ω
4 ∪W ∗

4 ·E4 is not finite-
state, because (W ω

4 ∪W ∗
4 ·E4)∩ (a∗ ·b)ω =W ω

4 is not finite-state.

Before proceeding to the next example we need the following lemma.

Lemma 18 An ω-language of the form V ·β is finite-state iff there are a regular language
V ′ and a word u such that V ·β =V ′ ·uω.

Proof. Clearly, the condition is sufficient. Conversely, ifV ·β is finite-state then there
are words w and w′ such that w′ 6= e, w ·w′

⊏ β and (V · β)/w · w′ ⊆ (V · β)/w. Let
ξ := β/(w ·w′). Since ξ ∈ V ·β/w, we have w · ξ = v ·β for some v ∈ V . On the other
hand, w ·w′ ·ξ= β. Consequently, w ·ξ = v ·w ·w′ ·ξ, that is, ξ = uω where w ·u= v ·w ·w′.
Then β is also ultimately periodic. Now define V ′ := {w : ξ ∈ (V ·β)/w}. ❏

Example 5 The equation T = X ·T ∪{ξ} has always the finite-state (even regular) maxi-
mum solution F5 = Xω, but according to our lemma its minimum solution X∗ · ξ is finite-
state if and only if ξ is ultimately periodic.

4 ω-power and δ-limit

In the preceding sections we have seen that, in contrast to the case of languages,
the linear equations Eq. (H ) and Eq. ( I ) may have many solutions in the range of
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ω-languages. One of the solutions of Eq. (H ) and a particularly interesting one (its
maximum solution) is the ω-power W ω.

In this section we investigate properties of the ω-power operation and its relation to
a limit operation mapping also languages to ω-languages—the so-called δ-limit4 of
a language W ⊆ X∗,

W δ := {ζ : ζ ∈ Xω∧A(ζ)∩W is infinite} . (7)

We also consider topological properties of ω-power languages. In this section we
investigate their relationships to BOREL-classes, and in the subsequent one we focus
on (relative) density.

In connection with acceptance results for ω-languages, like those ones as MAC-
NAUGHTON’s theorem, properties of ω-power languages are remarkably elusive.
In this respect the δ-limit has more transparent properties. Therefore it would be
desirable to derive some relationships between the operations of ω-power and δ-
limit. To this end we first calculate the δ-limit of the concatenation product and the
KLEENE-star of languages (cf. [St80a],[Lt88]).

W ·V δ ⊆ (W ·V )δ ⊆W ·V δ ∪W δ (8)

Particular cases of Eq. (8) are obtained for W δ = /0 or e ∈V , respectively.

(W ·V )δ = W ·V δ if W δ = /0 , and (9)

(W ·V )δ = W ·V δ ∪W δ if e ∈V (10)

In virtue of the obvious inclusion W ω ⊆ (W ∗)δ we obtain via the maximum solution
principle Corollary 1 the following.

(W ∗)δ =W ω ∪W ∗ ·W δ (11)

We can improve Eq. (8).

Property 19 Let C ⊆ X∗ be a prefix code and W,V ⊆C∗. Then

W ·V δ ⊆ (W ·V )δ ⊆W ·V δ ∪ (W δ ∩ (C∗ ·V )ω) .

Proof. If β ∈ (W ·V )δ \W ·V δ then β ∈W δ, that is, there are infinitely many prefixes
wi of β in W . To each wi belongs a vi ∈V such that wi · vi is a prefix of β.
Choose the family (wi)i∈IN in such a way that |w j+1| > |w j · v j|. Since C is a prefix
code and w j+1,w j,v j ∈ C∗ there is a u j+1 ∈ C∗ such that w j · v j · u j+1 = w j+1. Hence,
β = w1 · v1 ·u2 · v2 · . . . ·u j · v j · . . . ∈ (C∗ ·V )ω. ❏

Remark. In Property 19 it is important that C is indeed a prefix code. Consider e.g.
the suffix code5 C := {b,ba}. We obtain forW :=C∗ andV := {b} the proper inclusion
Cω = (C∗ ·b)δ ⊃Cω ∩ (C∗ ·b)ω.

4The name δ-limit is due to the fact that an ω-language F ⊆ Xω is a Gδ-set in CANTOR-space if and
only if there is a language W ⊆ X∗ such that F =W δ.

5This code has, in addition, a delay of decipherability of 1, that is, whenever w1 ·w2 ⊑ w′
1 ·w

′
2 for

w1,w2,w′
1,w

′
2 ∈C then w1 = w′

1.
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As a consequence of Property 19 we obtain that for a prefix code C ⊆ X∗ and V ⊆C∗

it holds

(C∗ ·V )δ = (C∗ ·V )ω ∪C∗ ·V δ . (12)

We derive two further identities linking the operations of ω-power and δ-limit for
languages of a special shapeC∗ ·V orW ·C∗ whereC ⊆ X∗ is a prefix code andW,V ⊆
C∗.

To this end let Min(W ) :=W \W · (X∗ \{e}) be the set of minimal words with respect
to “⊑” in a language W .

(C∗ ·V )ω =
(

Min(C∗ ·V )∗
)δ

(13)

(W ·C∗)ω =
(

W ·C∗ ·Min(W)
)δ

(14)

The proof can be easily transferred from the proof in the special case C = X which
can be found e.g. in [Pe85, Lt88].

In studying the relations between the ω-power and the δ-limit it is interesting to
investigate as an intermediate operation the infinite intersection

D(W ) :=
⋂

i∈IN

(W \{e})i ·Xω .

Though the assumption W ω =
⋂

i∈IN(W \{e})i ·Xω is tempting, it is well-known that
in general W ω and D(W ) do not coincide. It holds only the obvious inclusion

W ω ⊆D(W)⊆ (W ∗)δ . (15)

Next we give some examples which show that for both inclusions equality as well
as proper inclusion in Eq. (15) may hold, independently of each other.

First we observe that Eq. (8) implies W ω =D(W ) = (W ∗)δ wheneverW δ ⊆W ω. Thus,
in particular, the equality W ω = D(W) = (W ∗)δ holds if W is finite or W is a prefix
code (in these cases W δ = /0).
In connection with the equality W ω =D(W ) = (W∗)δ we mention the following con-
nection to BOREL-classes.

Property 20 If W ω is closed then W ω = D(W ) = (W ∗)δ, and if W ω =D(W ) then W ω is a
Gδ-set.

Proof. In virtue of Corollary 14 W ω is closed iff lsW ⊆W ω. Since W δ ⊆ lsW the first
assertion follows from Eq. (8). The second assertion follows from the definition of
D(W ). ❏

Our next example shows that proper inclusion in both cases is possible. Moreover
it gives examples of regular languages of special form (one being a suffix code, the
othe being prefix-closed) whose ω-power is not a Gδ-set.

Example 6 ([Pa81]) Consider the suffix code C6 := {a}∪ c · {a,b}∗ ·b.
Then cbaba2ba3 . . . ∈D(C6)\Cω

6 and cbω ∈ (C∗
6)

δ \D(C6), that is, Cω
6 ⊂D(C6)⊂ (C∗

6)
δ.
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Moreover the intersection of Cω
6 with the closed set c · {a,b}ω ⊆ {a,b,c}ω satisfies Cω

6 ∩ c ·
{a,b}ω = c · {a,b}∗ ·b ·aω ∈ Fσ \Gδ. Hence Cω

6 /∈ Gδ.

We continue this example with the prefix-closure of C6, W6 := A(C6) = {e,a}∪ c · {a,b}∗.
Here we have similarlyW ω

6 ∩ c · {a,b}ω = c · {a,b}∗ ·aω ∈ Fσ \Gδ, and W ω
6 /∈ Gδ.

Observe that as for C6 it holds cbaba2ba3 . . . ∈D(W6)\W ω
6 , and cbω ∈ (W ∗

6 )
δ \D(W6).

The purpose of the next example (due to WAGNER andWECHSUNG, cf. [St86, Exam-
ple 3]) is twofold. First it shows that D(W ) = (W ∗)δ while W ω ⊂ D(W ), and second
the proper inclusion holds although W ω is a Gδ-set.

Example 7 Let w1 := a and wi+1 := wi
i · bi · a for i ≥ 1. Then wi ⊑ wi

i ⊏ wi+1. Put C7 :=
{wi : i ≥ 1}. It holds Cδ

7 = {η} where wi
i ⊏ η for all i ≥ 1. Thus η ∈ D(C7), but η /∈ Cω

7 .
Moreover in [St86, Theorem 7 and Example 3] it is shown that Cω

7 is a Gδ-set.

In view of the general identitiesD(W) =W ∗ ·D(W) and (W∗)δ =D(W )∪W ∗ ·W δ, we have
C∗

7 ·η ⊆D(C7) whence the final conclusion Cω
7 ⊂D(C7) = (C∗

7)
δ.

It should be noted that in view of Corollary 23 below the language in Example 7
cannot be chosen regular.

The fourth possibility can be verified again by regular languages.

Example 8 Consider C8 := b · a∗ which is a (suffix) code having a delay of decipherability
of 1.

Hence, Cω
8 =D(C8) by Theorem 8 of [St86]. Since b ·aω ∈Cδ

8 \Cω
8 we have Cω

8 =D(C8)⊂

(C∗
8)

δ.

In Theorem 8 of [St86] it is shown that for codes C ⊆ X∗ having a bounded delay
of decipherability6 the identity Cω = D(C) holds. We present another class of lan-
guages for which this identity is true. SinceCω

8 = (b ·{a,b}∗)ω the subsequent lemma
will also prove that Cω

8 =D(C8).

Lemma 21 Let W ⊆ X∗ and W =W ·X∗. Then W ω =
⋂

i∈IN W i ·Xω.

Proof. If e ∈W the assertion is clear.

Let e /∈ W and η ∈
⋂

i∈IN W i · Xω. We construct inductively a factorization η = w1 ·
v1 · · ·vi−1 ·wi · vi · · ·where wi ∈W and vi ∈ X∗.
We start with an arbitrary w1 ∈ W for which w1 ⊏ η. Having defined w1 · v1 · · ·vi−1 ·

wi ⊏ η let ℓi := |w1 · v1 · · ·vi−1 ·wi|+1. Since η ∈W ℓi ·Xω, we have w(ℓi)
1 · · ·w(ℓi)

ℓi
⊏ η for

words w(ℓi)
1 , . . . ,w(ℓi)

ℓi
∈W . By the choice of ℓi it follows w1 ·v1 · · ·vi−1 ·wi ⊑w(ℓi)

1 · · ·w(ℓi)
ℓi−1.

Define vi ∈ X∗ such that w1 · v1 · · ·vi−1 ·wi · vi = w(ℓi)
1 · · ·w(ℓi)

ℓi−1 and wi+1 := w(ℓi)
ℓi

. ❏

A tight relation between W ω and D(W ) is given by the following lemma.

Lemma 22 Let v ·wω ∈D(W ) be an ultimately periodic sequence. Then v ·wω ∈W ω.

6For codes having a bounded delay of decipherability see also [BP85] or [Sa81].
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Proof. Let v ·wω ∈ D(W ). Then for every i ∈ IN there is a prefix u1 · · ·ui of v · wω

such that u j ∈ W ∗ \ {e}. Let u1 be longer than v and let i > |w|. Then there are
j,k ≤ i with j < k such that |u1 · · ·uk| − |u1 · · ·u j| is divisible by |w|. Hence v ·wω =
u1 · · ·u j · (u j+1 · · ·uk)

ω. ❏

Since regular ω-languages are characterized by their ultimately periodic ω-words,
D(W ) is not regular ifW ω is regular andD(W ) 6=W ω. Moreover, we have the follow-
ing.

Corollary 23 If W is regular and D(W ) = (W ∗)δ then W ω = (W ∗)δ.

Next we charcterize ω-power languages in several BOREL-classes. A first result for
closed sets has been obtained in Corollary 14. We start with the BOREL-class Gδ. To
this end we need the following operation. As in [St87b] we call

W ⊲V := {v : v ∈V ∧∃W (w ∈W ∧w ⊑ v∧∀u(w ⊏ u ⊏ v → u /∈V ))}

the continuation of the language W to the language V . In other words W ⊲V consists
of all those words in V which are minimal (w.r.t. “⊑”) prolongations of words inW .
The following properties of the operation “⊲” are shown in [St87b].

(W ⊲V )δ =W δ∩V δ (16)

Property 24 W ⊲V is a regular language if W and V are regular.

Lemma 25 An ω-power language W ω is a Gδ-set if and only if there is a V ⊆W ∗ such that
W ω = (V ∗)δ. If, moreover, W is regular then V can be chosen to be also regular.

Proof. The “if”-part is evident from the above remark on δ-limits.

If W ω ⊆ Xω is a Gδ-set then there is a language U ⊆ X∗ such that W ω =Uδ. Now set
V :=U ⊲W ∗. We obtain from Eq. (16) that V δ =Uδ ∩ (W ∗)δ =W ω. Then in virtue of
V ⊆W ∗ the assertion (V ∗)δ =V ω ∪V ∗ ·V δ =W ω follows.

The additional part on the regularity of V follows from Property 24 and the fact that
U can be chosen also as a regular language provided W ω is a regular ω-language. ❏

Now we turn to the ω-power languages which are open ω-languages.

Lemma 26 An ω-power languageV ω ⊆Xω is open if and only if there is a languageW ⊆V ∗

such that V ω =W ω = (W ·X∗)ω =W ·Xω.

Proof. Clearly, our condition is sufficient.

If V ω ⊆ Xω is open there is a language V ′ ⊆ X∗ with V ω =V ′ ·Xω. Define

W :=V ′ ·X∗∩ (V ∗ \{e}) .

Obviously, V ω = V ′ · Xω ⊆ W · Xω. As the inclusions W ω ⊆ (W · X∗)ω ⊆ W · Xω are
evident, it remains to show that V ω ⊆W ω.

Let ξ = v1 · · ·vi · · · where vi ∈ V , vi 6= e. Because of V ω = V ′ · Xω it holds ξ ∈ v′ ·
Xω for some v′ ∈ V ′. Then v′ ⊑ v1 · · ·v|v′| and, by construction, v1 · · ·v|v′| ∈ W and
v|v′|+1 · · ·vi · · · ∈V ω. Thus V ω ⊆W ·V ω, and the assertion follows from Eq. (1). ❏

For ω-power languages of the form (W ·X∗)ω we have the following necessary and
sufficient conditions to be open.
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Lemma 27 Let W ⊆ X∗ \ {e} be a nonempty language. Then the following conditions are
equivalent:

1. (W ·X∗)ω contains a nonempty open subset.

2. X∗ ·W contains a finite maximal prefix code.

3. (W ·X∗)ω =W ·Xω.

Proof. 3.⇒ 1. is obvious.
2.⇒ 3. Let X∗ ·W contain a finite maximal prefix code C. Then Xω =Cω ⊆ (X∗ ·W )ω,
whence (W ·X∗)ω =W · (X∗ ·W )ω =W ·Xω.
1.⇒ 2. First we observe that ξ∈ (W ·X∗)ω iff it has some w0∈W as prefix and contains
infinitely many nonoverlapping subwords wi ∈W , that is, ξ has the form ξ = w0 · v0 ·
w1 · v1 · · ·wi · vi · · ·where vi ∈ X∗.

Let now u · Xω ⊆ (W ·X∗)ω for some u ∈ X∗. Then every ζ ∈ Xω has the form ζ =
v0 ·w1 · v1 · · ·wi · vi · · · where wi ∈ W and vi ∈ X∗. Consequently, every ζ ∈ Xω has a
prefix in X∗ ·W . Thus X∗ ·W ·Xω = Xω, which is equivalent to Condition 2. ❏

This lemma allows us to present examples of ω-power languages which are open
but not closed and which are neither open nor closed but a union of an open and a
closed set, respectively.

Property 28 Let η ∈ Xω \ {xω : x ∈ X}. Then Xω \ {η} is an open nonclosed ω-power
language.

Proof. It is evident that Xω \ {η} is an open nonclosed subset in CANTOR-space.
Moreover, Xω \{η}= (X∗ \A(η)) ·Xω.

Since η /∈ {xω : x ∈ X}, it has a prefix an · b (say) where a,b ∈ X , a 6= b and n > 0.
Consequently, (X \ {a})∪{an+1} ⊆ X∗ \A(η). Thus Xn+1 is a finite maximal prefix
code contained in X∗ · (X∗ \A(η)), and Xω \ {η} = ((X∗ \A(η)) ·X∗)ω follows from
Lemma 27. ❏

We conclude with an example of an ω-power language which is neither open nor
closed, but as a union of an open and a closed ω-language a set in a low level BOREL-
class.

Example 9 Let C := {a}∪{bab}∗ ·bbb. Then for X := {a,b} the language X∗ ·C contains
{a,ba,bba,bbb} – a maximal prefix code. Hence (C ·X∗)ω = C ·Xω is open and, since C is
an infinite prefix code, C ·Xω is not closed.

Take the prefix codeC and consider F := (C ·X∗∪{baa})ω. Due to the identity (V ∪W )ω =
(W ∗ ·V )ω ∪ (W ∗ ·V )∗ ·W ω we obtain F = ({baa}∗ ·C ·X∗)ω ∪ ({baa}∗ ·C ·X∗)∗ · (baa)ω.

Now we calculate ({baa}∗ ·C ·X∗)ω = {baa}∗ · (C ·X∗ · {baa}∗)ω = {baa}∗ · (C ·X∗)ω =
{baa}∗ ·C ·Xω, and ({baa}∗ ·C ·X∗)∗ = {e}∪{baa}∗ ·C ·X∗.

Thus F = {baa}∗ ·C ·Xω∪({baa}∗ ·C ·X∗) ·(baa)ω∪{(baa)ω}= {baa}∗ ·C ·Xω∪{(baa)ω}
is a union of the open set {baa}∗ ·C ·Xω with the closed set {(baa)ω}. It remains to show
that F is neither open nor closed.

To this end observe that (baa)ω /∈ {baa}∗ ·C ·Xω, thus F is not open, and that (bab)ω ∈
C (F)\F .
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5 Topological density

In this section we study the density of regular and finite-state ω-languages in ω-
power languages. It turns out that in this case density and subwords are closely
related.

Topological density is based on the following notion. A set F is nowhere dense in
E ⊆ Xω provided C (E \C (F)) = C (E), that is, if C (F) does not contain a nonempty
subset of the form E ∩w ·Xω. This condition can be formulated as follows.

Lemma 29 A set F ⊆ Xω is nowhere dense in E iff for every v ∈ A(E) there is a w ∈ X∗

such that v ·w ∈A(E) and v ·w ·Xω∩ F = /0.

Cast in the language of prefixes, our Lemma 29 asserts, that F is not nowhere dense
in E 6= /0 if and only if there is a w ∈A(E) such that E/w ⊆ C (F)/w. From the follow-
ing equation

C (E \C (F)) = C (E \ (C (F)∩E)) = C (C (E)\C (F)) (17)

we see that F is nowhere dense in E iff F is nowhere dense in C (E) and iff (C (F)∩E)
is nowhere dense in E.
A subset F ⊆ Xω is called nowhere dense if it is nowhere dense in Xω. For finite-state
nowhere dense ω-languages we have the following.

Lemma 30 ([St76,80b]) A finite-state set F ∈ Xω is nowhere dense iff there is a pattern
w ∈ X∗ such that F ⊆ Xω \X∗ ·w ·Xω.

The aim of this section is to generalize the result of Lemma 30 to finite-state ω-lan-
guages nowhere dense in an ω-power language W ω.

We obtain the following version of Lemma 29.

Corollary 31 Let W ⊆ X∗. Then F ⊆ Xω is nowhere dense in W ω if and only if for every
v ∈W ∗ there is a w ∈W ∗ such that v ·w ·Xω∩ F = /0.

Cast again in the language of prefixes, we have that F is not nowhere dense in an
ω-power languageW ω if and only if there is a w ∈W ∗ such thatW ω/w ⊆ C (F)/w. We
obtain the following necessary and sufficient conditions for a finite-state ω-language
to be nowhere dense in an ω-power language.

Lemma 32 Let W ⊆ X∗, and let F ⊆ Xω be a finite-state ω-language. Then the following
conditions are equivalent.

1. F is nowhere dense in W ω.

2. ∀u(u ∈W ∗ ⇒ F/u is nowhere dense in W ω)

3. ∀w(w ∈ Stab(C (W ω))∪{e}⇒ F/w is nowhere dense in W ω)

4. ∀v(v ∈ X∗ ⇒ (C (F)∩W ω)/v is nowhere dense in W ω)
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5. ∀v(v ∈ X∗ ⇒ (C (F)∩C (W ω))/v is nowhere dense in W ω)

Remark. Observe that, in general, the stabilizer of C (W ω), Stab(C (W ω)) contains
Stab(W ω) ⊇ W ∗ \ {e}. Thus Condition 3 shows more states F/w of F to be nowhere
dense in W ω than Condition 2.

Proof. The implications 5. ⇒ 4., 4. ⇒ 1., 3. ⇒ 2., and 2. ⇒ 1. are obvious.

To conclude the proof, it suffices to show 1. ⇒ 3. and 3. ⇒ 5.. To this end
assume first that Condition 5 does not hold, that is, there is a v ∈ X∗ such that
(C (F)∩C (W ω))/v is not nowhere dense inW ω. Then according to Corollary 31 there
is a w∈W ∗ satisfying (C (F)∩C (W ω))/v ·w⊇C (W ω)/w. Since w∈W ∗⊆ Stab(C (W ω))∪
{e}, we have C (W ω)/w ⊇ C (W ω). Consequently, u := v ·w ∈ Stab(C (W ω))∪{e}, and
C (F)/u ⊇W ω which shows that F/u is not nowhere dense in W ω.

Now assume Condition 3 to be violated, that is, let F/w be not nowhere dense
in W ω for some w ∈ Stab(C (W ω))∪ {e}. According to Corollary 31 there is a v ∈
W ∗ ⊆ Stab(C (W ω))∪{e} such that C (F)/w · v ⊇ C (W ω)/v. Consequently, u := w · v ∈
Stab(C (W ω)).

Since F is finite-state, there are n,k ≥ 1 such that F/un = F/un+k. Hence C (W ω) ⊆
C (F)/u implies C (W ω)/un+k−1 ⊆ C (F)/un+k = C (F)/un.

Now observe that C (W ω)/un ⊆ C (W ω)/un+k−1 ⊆ C (F)/un, because u ∈ Stab(C (W ω))∪
{e}, what proves our assertion. ❏

As a consequence of Lemma 32we show the announced generalization of Lemma 30
that for finite-state ω-languages nowhere dense in ω-power languages W ω there are
patterns, that is subwords appearing in the ω-power language W ω which do not
appear in the finite-state ω-language F . Those patterns can be shown to belong to
W ∗. Due to the possiblity that F 6⊆ C (W ω) we have to distinguish two cases.

Theorem 33 Let F ⊆ Xω be finite-state, and let W ∗ ⊆ X∗.

1. F is nowhere dense in W ω iff there is a w ∈W ∗ such that C (F)∩C (W ω) ⊆ C (W ω) \
W ∗ ·w ·Xω.

2. If F ⊆ C (W ω) then F is nowhere dense in W ω iff there is a u ∈ W ∗ such that F ⊆
C (W ω)\X∗ ·u ·Xω.

Proof. 1. If F is finite-state and nowhere dense in W ω then according to Lemma 32.2
the set F ′ :=

⋃
u∈W ∗ F/u as a finite union of sets nowhere dense inW ω is again nowhere

dense in W ω. Hence, there is a w ∈W ∗ such that F ′∩w ·Xω = /0.
Assume that F ∩W ∗ ·w ·Xω 6= /0. Then there is some v ∈W ∗ such that F ∩ v ·w ·Xω =
v ·(F/v)∩v ·w ·Xω 6= /0, which contradicts the fact that F ′ ⊇ F/v and w ·Xω are disjoint.

To prove the converse direction, suppose F to be not nowhere dense in W ω, that is,
according to Lemma 32.2 and Corollary 31 there is some u ∈ W ∗ such that C (F)/u ·
w ⊇ C (W ω)/w ⊇ C (W ω) for some w ∈ W ∗. Hence, A(F) ⊇ w · u ·W ∗ and there is no
v ∈W ∗ with F ∩u ·w · v ·Xω = /0.
2. In view of Lemma 32.5 from C (F) ⊆ C (W ω) we obtain that the finite union
F ′′ :=

⋃
u∈X∗ F/u is also nowhere dense in W ω provided F is nowhere dense in W ω.
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Now the proof proceeds as in 1. The converse direction of the second part is an im-
mediate consequence of the first part. ❏

For ω-powers of codes we obtain the following corollary to Theorem 33.1.

Corollary 34 Let F ⊆ Xω be finite-state, and letC ⊆ X∗ be a code. If F is nowhere dense in
Cω then there are a k > 0 and a word u ∈Ck such that F ∩C (Cω)⊆ C

(

(Ck \{u})ω)

The converse statement is, however, not true in general. Consider e.g. the suffix
code C :=

⋃
n∈IN{a,b}n · b · an. Here C ((Ck \ {u})ω) = C (Cω) = {a,b}ω for every pair

k > 0 and u ∈Ck, but F := {a,b}ω is dense in Cω.
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