

Modulhandbuch

für das Studienfach:

Informatik (Gymnasium)

im Lehramt Gymnasien

Inhalt:

Algorithmen auf Sequenzen I	Seite 3
Automaten und Berechenbarkeit	Seite 5
Datenbanken I	Seite 7
Datenstrukturen und Effiziente Algorithmen I	Seite 10
Datenstrukturen und Effiziente Algorithmen II	Seite 13
Einführung in Rechnerarchitektur	Seite 16
Einführung in Rechnernetze und verteilte Systeme	Seite 18
Einführung in die Bildverarbeitung	Seite 21
Einführung in die Computergrafik	Seite 23
Einführung in die Künstliche Intelligenz	Seite 25
Grundlagen des World Wide Web	Seite 27
Informatik und Gesellschaft	Seite 30
Informatikdidaktik AB	Seite 32
Informatikdidaktik CDE	Seite 35
Informatikdidaktik FG	Seite 38
Komponenten- und Service-Orientierte Software	Seite 41
Konzepte der Programmierung	Seite 43
Mathematische Grundlagen der Informatik und Konzepte der Modellierung	Seite 46
Objektorientierte Programmierung	Seite 49
Softwaretechnik (Lehramt)	Seite 52
Technische Informatik, Betriebssysteme und Rechnernetze (Lehramt)	Seite 54
Theorie der Datensicherheit	Seite 56

Modul: Algorithmen auf Sequenzen I

Identifikationsnummer:

INF.00893.04

Lernziele:

- Verständnis grundlegender Algorithmen zum exakten und approximativen Sequenzvergleich und deren Komplexität
- Fähigkeit der Anwendung solcher Methoden für konkrete Problemstellungen der Sequenzanalyse

Inhalte:

- Boyer-Moore-Algorithmus zum exakten Sequenzvergleich
- Suffix-Bäume, generalisierte Suffix-Bäume, Suffix-Arrays
- Anwendungen exakter Sequenzvergleiche in der Bioinformatik
- globales, semi-globales, lokales paarweises Alignment; Lösungen mit Dynamischer Programmierung
- multiples Alignment; Lösungen mit Dynamischer Programmierung, Center-Star-Verfahren, Clustal
- Anwendungen approximativer Sequenzvergleiche in der Bioinformatik

Verantwortlichkeiten (Stand 14.01.2013):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Stefan Posch
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeit (Stand 21.07.2012):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Master	Informatik 120 LP	1. bis 3.	Wahlpflichtmodul	Fachnote	5/120
Bachelor	Mathematik mit	4. oder 6.	Wahlpflichtmodul	Fachnote	5/154
	Anwendungsfach 180 LP				
Bachelor	Informatik 180 LP	5. oder 6.	Wahlpflichtmodul	Fachnote	5/155
Bachelor	Bioinformatik 180 LP	4.	Pflichtmodul	Fachnote	5/170
Lehramt	Informatik	5. bis 8.	Wahlpflichtmodul	keine	erfolgreicher
Förderschulen	(Sekundarschule)			Benotung	Abschluss
Lehramt	Informatik (Gymnasium)	5. bis 8.	Wahlpflichtmodul	keine	erfolgreicher
Gymnasien				Benotung	Abschluss

Teilnahmevoraussetzungen:

Obligatorisch:

Objektorientierte Programmierung (Modulvorleistung) Datenstrukturen und effiziente Algorithmen I (Modulvorleistung) Für Studierende im Masterstudiengang Informatik entfallen diese Teilnahmevoraussetungen

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Sommersemester
Selbststudium zur Vorlesung	0	45	Sommersemester
Übung	2	30	Sommersemester
Bearbeiten der Übungsaufgabe	0	45	Sommersemester

Studienleistungen:

- Erfolgreiches Lösen von Übungsaufgaben
- Erfolgreiches Vorrechnen von Übungsaufgaben in den Übungen
- regelmässige Teilnahme

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	100 %

Termine für die Modulleistung:

1.Termin: spätestens am Ende der vorlesungsfreien Zeit des Semesters, in dem das

Modul angeboten wurde

1. Wiederholungstermin: spätestens am Ende der vorlesungsfreien Zeit des folgenden Semesters

2. Wiederholungstermin: Erst nach Wiederholung des Moduls. Die maximale Anzahl der zweiten

Wiederholungsmöglichkeiten ist in den Prüfungsordnungen festgelegt.

Hinweise:

Dieses Modul darf im Studiengang Informatik (Master) nur dann belegt werden, wenn es (oder ein vergleichbares Modul) in einem Bachelorstudiengang belegt wurde. Falls das Modul im Studiengang Informatik (Master) belegt wird, dann entfallen die Teilnehmevoraussetzungen.

Modul: Automaten und Berechenbarkeit

Identifikationsnummer:

INF.00882.04

Lernziele:

- Abstrakte Spezifikation und Verifikation sind grundlegende intellektuelle Fähigkeiten und Fertigkeiten eines Informatikers. Diese Lehrveranstaltung soll die Studierenden befähigen, eigene Gedankengänge logisch zu analysieren, Trugschlüsse zu vermeiden. Ein weiteres Ziel dieser Veranstaltung ist damit eng verknnüpft: das Verständnis für (prinzipielle) Berechenbarkeiten, sowie das Kennenlernen von verschiedenen Berechnungsbegriffen und -konzepten. Im einzelnen ergeben sich folgende Lernziele:
- Grundlegendes Verständnis für Berechenbarkeit und abstrakte Modelle der Informatik
- Verständnis für abstakte Zusammenhänge, Kenntnis grundlegender theoretischer Methoden, Fähigkeit zum logischen Denken
- exaktes und gründliches Arbeiten
- Anwendung verschiedener Problemlösestrategien und Beweisverfahren
- Erkennen von Zusammenhängen zwischen verschiedenen Gebieten und Konzepten der Informatik und Mathematischen Logik
- Förderung des logischen Denkens und Abstraktionsvermögens

Inhalte:

- Endliche Automaten
- Formale Sprachen
- Kontextfreie Sprachen
- Algorithmusbegriff
- Berechenbarkeitstheorie
- Entscheidbarkeit und Unentscheidbarkeit

Verantwortlichkeiten (Stand 08.06.2012):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Ludwig Staiger
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeit (Stand 08.06.2012):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Mathematik mit	4. oder 6.	Wahlpflichtmodul	Fachnote	10/154
	Anwendungsfach 180 LP				
Bachelor	Informatik 180 LP	4.	Pflichtmodul	Fachnote	10/155
Bachelor	Bioinformatik 180 LP	5. bis 6.	Wahlpflichtmodul	Fachnote	10/170
Lehramt	Informatik	4. oder 6.	Pflichtmodul	Fachnote	examens-
Förderschulen	(Sekundarschule)				relevant
Lehramt	Informatik (Gymnasium)	4. oder 6.	Pflichtmodul	Fachnote	examens-
Gymnasien					relevant

Teilnahmevoraussetzungen:

Obligatorisch:

Modul "Mathematische Grundlagen der Informatik und Konzepte der Modellierung" (Besuch)

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

300 Stunden

Leistungspunkte:

10 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	4	60	Sommersemester
Übung	2	30	Sommersemester
Bearbeiten der Übungsausgaben	0	210	Sommersemester

Studienleistungen:

- Korrekte Bearbeitung der theoretischen Übungsaufgaben in Höhe von mindestens 60% der maximal erreichbaren Punkte
- 5 Kurzvorträge über Lösungen von Übungsaufgaben

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	100 %

Termine für die Modulleistung:

1.Termin: nach der Vorlesungszeit, des laufenden Semesters1.Wiederholungstermin: spätestens am Ende des nachfolgenden Semesters

2. Wiederholungstermin: Erst nach Wiederholung des Moduls. Die maximale Anzahl der zweiten

Wiederholungsmöglichkeiten ist in den Prüfungsordnungen festgelegt.

Modul: <u>Datenbanken I</u>

Identifikationsnummer:

INF.00678.04

Lernziele:

- Die wichtigsten Funktionen von Datenbanken-Managementsystemen erklären und ihren Nutzen in einem Projekt abschätzen (gegenüber einer Datei-basierten Lösung). Hierzu gehört insbesondere das Transaktionskonzept.
- Allgemeine Grundbegriffe und die logischen Grundlagen von Datenbanken erklären.
- Anfragen an existierende relationale Datenbanken in der Datenbanksprache SQL formulieren. (auch komplexe Anfragen inklusive Anfragen an Data Warehouses)
- Mit mindestens einem verbreiteten Datenbank-Managementsystem (DBMS) praktisch arbeiten (z.B. Oracle).
- Datenbanken für gegebene (kleinere) Anwendungen entwerfen.
- Die Zuverlässigkeit von Anwendungen bei parallelem Zugriff (Mehrbenutzerbetrieb) beurteilen.
- Zugriffsrechte und Sichten zum Datenschutz einsetzen

Inhalte:

- Grundlegende Datenbank-Begriffe, Funktionen von Datenbanksystemen
- Einführung in die mathematische Logik mit Anwendungen für Datenbanken (insbesondere Aufgabenkalküle)
- Relationales Datenmodell, Integritätsbedingungen
- Relationale Algebra, Ausdrucksfähigkeit von Anfragesprachen
- Die Datenbanksprache SQL (Schwerpunkt der Vorlesung)
- Einführung in Datenbankentwurf (Entity-Relationship-Modell,Logischer Entwurf, Relationale Normalformen: BCNF)
- Kurze Einführung in den Speicherstrukturen und Zugriffspfade (Indexe)
- Transaktionen, Mehrbenutzerbetrieb (Synchronisation paralleler Zugriffe)
- Datenbanksicherheit
- Einführung in die Anwendungs-Programmierung
- Einführung in Data Warehouses und Data Mining

Verantwortlichkeiten (Stand 19.01.2012):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Stefan Brass
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeit (Stand 21.07.2012):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor (2-Fach)	Kernfach	5.	Pflichtmodul	Fachnote	10/90
	Wirtschaftsinformatik				
	(Core Subject Business				
	Information Systems) 120				
	LP				

Master	Mathematik 120 LP	1.	Wahlpflichtmodul	Fachnote	10/120
Master	Wirtschaftsmathematik	1.	Wahlpflichtmodul	Fachnote	10/115
	120 LP				
Bachelor	Mathematik mit	5.	Wahlpflichtmodul	Fachnote	10/154
	Anwendungsfach 180 LP				
Bachelor	Geographie 180 LP	3.	Wahlpflichtmodul	Fachnote	10/125
Bachelor	Wirtschaftsinformatik	3.	Pflichtmodul	Fachnote	10/150
	(Business Information				
	Systems) 180 LP				
Bachelor	Informatik 180 LP ab	3.	Pflichtmodul	Fachnote	10/155
	WiSe 2012				
Bachelor	Informatik 180 LP ab	3.	Pflichtmodul	Fachnote	10/160
	SoSe 2012				
Bachelor	Bioinformatik 180 LP	5.	Pflichtmodul	Fachnote	10/170
Lehramt	Informatik	3. bis 7.	Wahlpflichtmodul	keine	erfolgreicher
Förderschulen	(Sekundarschule)			Benotung	Abschluss
Lehramt	Informatik (Gymnasium)	3. bis 7.	Pflichtmodul	Fachnote	examens-
Gymnasien					relevant

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

Modul "Grundlagen und Konzepte der Modellierung" (Studiengang Informatik) Modul "Einführung in die Wirtschaftsinformatik" (Studiengang Wirtschaftsinformatik) Programmierkenntnisse, in der Regel nachgewiesen durch erfolgreichen Abschluss des Moduls objektorientierte Programmierung, in Ausnahmefällen sind andere Nachweise nach Absprache möglich

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

300 Stunden

Leistungspunkte:

10 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	4	60	Wintersemester
Selbststudium	0	120	Wintersemester
Theoretische/Praktische Übung mit	2	30	Wintersemester
Seminaranteil			
Praktische Übung am Rechner	1	15	Wintersemester
Lösen von Hausaufgaben	0	75	Wintersemester

Studienleistungen:

- Korrekte Bearbeitung der Hausaufgaben, wobei ein gewisser Prozentsatz der Punkte erreicht werden muss, eine weitere Präzisierung findet sich in der konkreten Modulbeschreibung
- Regelmäßige und aktive Mitarbeit in den Übungen inklusive Kurzvorträgen über die Hausaufgaben und der Beantwortung von Fragen zum Umfeld der Aufgaben
- In Einzelfällen (begründete Ausnahmen) kann der Modulverantwortliche eine mündliche Kurzprüfung als Alternative anbieten.

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	100 %

Termine für die Modulleistung:

1.Termin: spätestens am Ende der vorlesungsfreien Zeit des Semesters

1. Wiederholungstermin: spätestens am Ende der Vorlesungszeit des folgenden Semesters

2. Wiederholungstermin: Erst nach Wiederholung des Moduls. Die maximale Anzahl der zweiten

Wiederholungsmöglichkeiten ist in den Prüfungsordnungen festgelegt.

Modul: <u>Datenstrukturen und Effiziente Algorithmen I</u>

Identifikationsnummer:

INF.00679.04

Lernziele:

- In diesem Modul sollen die Studierenden eine grundlegende Einführung in den Entwurf und die Analyse von Algorithmen bekommen sowie die wichtigsten elementaren Datenstrukturen kennen lernen.
- Es soll die Fähigkeit erworben werden, Laufzeit und Speicherbedarf eines Algorithmus asymptotisch abschätzen zu können und insbesondere rekursive Algorithmen zu analysieren.
- Die Studierenden sollen lernen, dass die Effizienz eines Algorithmus von der geeigneten Wahl der Datenstrukturen abhängt und sie sollen in die Lage versetzt werden, selbstständig die Auswahl der Datenstrukturen treffen zu können.
- Ferner sollen die Studierenden lernen, wie man Algorithmen programmtechnisch effizient umsetzt. Dabei werden die Kenntnisse aus dem Modul "Objektorientierte Programmierung" vertieft.

Inhalte:

- Korrektheit von Algorithmen: Verifikation
- Asymptotische Kosten eines Algorithmus: Effizienzanalyse
- Grundlegende Datenstrukturen (Felder, Listen, Bäume, Queues, Stacks)
- Rekursive Algorithmen, Rekurrenzgleichungen
- Sortierverfahren (Mergesort, Quicksort, Heapsort, Bucketsort)
- Suchen: Wörterbücher, Suchbäume, Hashing
- einfache Graphenalgorithmen (Tiefen- und Breitensuche, Zusammenhang, kürzeste Wegeprobleme)
- algorithmische Prinzipien: dynamisches Programmieren, divide and conquer

Verantwortlichkeiten (Stand 08.06.2012):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Matthias Müller-Hannemann
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeit (Stand 06.06.2012):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor (2-Fach)	Kernfach	2.	Pflichtmodul	Fachnote	5/90
	Wirtschaftsinformatik				
	(Core Subject Business				
	Information Systems) 120				
	LP				
Bachelor	Mathematik mit	2.	Wahlpflichtmodul	Fachnote	5/154
	Anwendungsfach 180 LP				
Bachelor	Physik 180 LP ab SoSe	2.	Wahlpflichtmodul	Fachnote	5/138
	2013				

Bachelor	Physik 180 LP ab SoSe	2.	Wahlpflichtmodul	Fachnote	5/136
	2013				
Bachelor	Geographie 180 LP	2.	Wahlpflichtmodul	Fachnote	5/125
Bachelor	Wirtschaftsinformatik	2.	Pflichtmodul	Fachnote	5/150
	(Business Information				
	Systems) 180 LP				
Bachelor	Wirtschaftsmathematik	2.	Wahlpflichtmodul	Fachnote	5/152
	180 LP				
Bachelor	Informatik 180 LP	2.	Pflichtmodul	Fachnote	5/155
Bachelor	Bioinformatik 180 LP	2.	Pflichtmodul	Fachnote	5/170
Lehramt	Informatik	2. oder 4.	Pflichtmodul	Fachnote	examens-
Sekundarschulen	(Sekundarschule)				relevant
Lehramt	Informatik	2. oder 4.	Pflichtmodul	Fachnote	examens-
Förderschulen	(Sekundarschule)				relevant
Lehramt	Informatik (Gymnasium)	2. oder 4.	Pflichtmodul	Fachnote	examens-
Gymnasien					relevant

Teilnahmevoraussetzungen:

Obligatorisch:

Modul/e:

- Objektorientierte Programmierung

Wünschenswert:

Kenntnisse in einer Programmiersprache

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Sommersemester
Übung	2	30	Sommersemester
Bearbeiten der Übungsausgaben	0	15	Sommersemester
Bearbeiten praktischer	0	30	Sommersemester
Programmieraufgaben			
Selbststudium	0	45	Sommersemester

Studienleistungen:

- Erfolgreiches Lösen von Übungsaufgaben
- Korrekte Bearbeitung der Programmieraufgaben
- Erfolgreiches Vorrechnen von Übungsaufgaben in der Übung

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	100 %

Termine für die Modulleistung:

1.Termin: spätestens am Ende der vorlesungsfreien Zeit des Semesters

1. Wiederholungstermin: spätestens am Ende der vorlesungsfreien Zeit des folgenden Semesters

2. Wiederholungstermin: Erst nach Wiederholung des Moduls. Die maximale Anzahl der zweiten

Wiederholungsmöglichkeiten ist in den Prüfungsordnungen festgelegt.

Modul: Datenstrukturen und Effiziente Algorithmen II

Identifikationsnummer:

INF.00885.03

Lernziele:

- Dieses Modul dient der Vertiefung und Erweiterung der Kenntnisse aus dem Modul "Datenstrukturen und effiziente Algorithmen I". Es soll das Verständnis erworben werden, dass es aus komplexitätstheoretischer Sicht Probleme unterschiedlicher Komplexität gibt. Die wichtigsten Entwurfsprinzipien für Algorithmen sollen kennen gelernt werden, dabei werden auch Verfahren zum Lösen schwerer kombinatorischer Probleme behandelt. Die Studierenden sollen erlernen, welche Vor- und Nachteile diese Verfahren besitzen, und sollen einschätzen können, welche Verfahren für konkrete Probleme aussichtsreich sind.
- Ebenso lernen die Studierenden eine Reihe von komplexeren Datenstrukturen kennen. Sie sollen beurteilen können, für welche Aufgabenstellungen diese Datenstrukturen angemessen sind.
- Schließlich werden grundlegende Algorithmen aus verschiedenen Anwendungsbereichen vermittelt. Dies gibt den Studierenden einen ersten Einblick in die Gebiete Graphenalgorithmen, String-Matching, zahlentheoretische Algorithmen und Kryptographie sowie in die algorithmische Geometrie.

Inhalte:

- Komplexität von Berechnungen
- Polynomialzeitberechenbarkeit und -reduzierbarkeit, NP-Vollständigkeit
- Höhere Datenstrukturen (u.a. Prioriätswarteschlangen, union-find, AVL-Bäume, B-Bäume)
- Designprinzipien für Algorithmen (Greedy-Verfahren, Branch&Bound)
- Ausgewählte Themen aus den Bereichen Graphenalgorithmen, String-Matching, Zahlentheoretische Methoden, Algorithmische Geometrie

Verantwortlichkeiten (Stand 08.06.2012):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Matthias Müller-Hannemann
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeit (Stand 06.06.2012):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Master	Wirtschaftsmathematik	1.	Wahlpflichtmodul	Fachnote	5/115
	120 LP				
Master	Physik 120 LP	1.	Wahlpflichtmodul	Fachnote	0/70
Bachelor	Mathematik mit	3.	Wahlpflichtmodul	Fachnote	5/154
	Anwendungsfach 180 LP				
Bachelor	Geographie 180 LP	5.	Wahlpflichtmodul	Fachnote	5/125
Bachelor	Informatik 180 LP ab	3.	Pflichtmodul	Fachnote	5/155
	WiSe 2012				
Bachelor	Informatik 180 LP ab	3.	Pflichtmodul	Fachnote	5/160
	SoSe 2012				
Bachelor	Bioinformatik 180 LP	5.	Wahlpflichtmodul	Fachnote	5/170

Lehramt	Informatik	5. bis 8.	Wahlpflichtmodul	keine	erfolgreicher
Förderschulen	(Sekundarschule)			Benotung	Abschluss
Lehramt	Informatik (Gymnasium)	5. bis 8.	Wahlpflichtmodul	keine	erfolgreicher
Gymnasien				Benotung	Abschluss

Teilnahmevoraussetzungen:

Obligatorisch:

Modul/e:

- Datenstrukturen und Effiziente Algorithmen I

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Wintersemester
Übung	2	30	Wintersemester
Selbststudium und Prüfungsvorbereitung	0	45	Wintersemester
Bearbeiten der Übungsausgaben	0	45	Wintersemester

Studienleistungen:

- Erfolgreiches Lösen von Übungsaufgaben.
- Erfolgreiches Vorrechnen von Übungsaufgaben in der Übung

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	100 %

Termine für die Modulleistung:

1.Termin: spätestens am Ende der vorlesungsfreien Zeit des Semesters, in dem das

Modul angeboten wurde

1. Wiederholungstermin: spätestens am Ende der vorlesungsfreien Zeit des folgenden Semesters

2. Wiederholungstermin: Erst nach Wiederholung des Moduls. Die maximale Anzahl der zweiten

Modulhandbuch: Lehramt Gymnasien Informatik (Gymnasium) Fachspezifische Bestimmungen vom 21.02.2013
Wiederholungsmöglichkeiten ist in den Prüfungsordnungen festgelegt.

Modul: <u>Einführung in Rechnerarchitektur</u>

Identifikationsnummer:

INF.05179.01

Lernziele:

- In diesem Modul sollen die Studierenden lernen, wie ein Rechner aufgebaut ist, wie die Module eines Rechners miteinander agieren und wie in einem Rechner ein Maschinenprogramm ausgeführt wird. Hauptaugenmerk liegt hierbei auf dem Aufbau und der Funktionsweise des Prozessors.
- Die Studierenden sollen lernen, wie Objekte, speziell Zeichen und Zahlen, in einem Rechner dargestellt werden und wie Operationen auf diesen Darstellungen erfolgen können.
- Die Studierenden sollen befähigt werden, kleinere Programme in Maschinensprache zu schreiben.
- Die Studierenden sollen existierender Rechnerarchitekturen (Multicore, Parallelrechner) kennenlerner

Inhalte:

- Historischer Rückblick auf die Entwicklung der Rechner
- Darstellung von Zeichen in einem Rechner
- Darstellungen von Zahlen (Festkomma- und Gleichkomma-Zahlendarstellungen) in einem Rechner
- Aufbau und Funktionsweise von Ein- und Mehr-Zyklen-Prozessoren
- Mikroprogrammierung
- Vor- und Nachteile von RISC (Reduced Instruction Set Computer) und CISC (Complex Instruction Set Computer)
- Aufbau und Funktionsweise unterschiedlicher Speicherarten
- Speicherhierarchie, insbesondere Caches und Virtueller Speicher
- Hardware- und Software-Interrupts
- Überblick existierender Rechnerarchitekturen

Verantwortlichkeiten (Stand 08.06.2012):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Paul Molitor
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeit (Stand 20.07.2012):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Informatik 180 LP	1.	Pflichtmodul	Fachnote	5/155
Lehramt	Informatik	1.	Pflichtmodul	Fachnote	examens-
Sekundarschulen	(Sekundarschule)				relevant
Lehramt	Informatik (Gymnasium)	1.	Pflichtmodul	Fachnote	examens-
Gymnasien					relevant

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	3	45	Wintersemester
Selbststudium ggf. Besuch eines Tutoriums,	0	60	Wintersemester
Prüfungsvorbereitung			
Übung	1	15	Wintersemester
Bearbeiten theoretischer Übungsaufgaben	0	15	Wintersemester
Bearbeiten praktischer	0	15	Wintersemester
Programmieraufgaben auf			
Maschinenprache-Ebene			

Studienleistungen:

- Erfolgreiches Lösen von Übungsaufgaben in einer vorgegebenen Zeit
- Erfolgreiches Bearbeiten von Programmieraufgaben in einer vorgegebenen Zeit
- Erfolgreiches Vorrechnen in den Übungen

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	100 %

Termine für die Modulleistung:

1.Termin: bis zum Ende der vorlesungsfreien Zeit des Semesters

1. Wiederholungstermin: bis zum Ende der vorlesungsfreien Zeit des Folgesemesters

2. Wiederholungstermin: nach Wiederholung des Moduls

Modul: Einführung in Rechnernetze und verteilte Systeme

Identifikationsnummer:

INF.00684.03

Lernziele:

- Das Modul gibt einen Einführung in Rechnernetze, Kodierung von Daten und Kommunikationsprotokolle. Ein besonderes Augenmerk in Bezug auf die Übertragung von Daten wird in der Vorlesung auf die Layer 1, 2 und 3 des OSI-Modells gelegt
- Kenntnis der unterschiedlichen Netzwerktopologien im LAN und WAN- Bereich Wissen, wie Information fehlertolerant kodiert werden kann
- Wissen, wie Information fehlertolerant kodiert werden kann
- Kenntnis des prinzipiellen Aufbaus von Protokollen, insbesondere Internet-Protokollhierarchie
- Kenntnis der Grundlagen der Informationstheorie und wie Information verlustfrei komprimiert werden kann.
- Kenntnis verschiedener Sicherheitstechniken
- Kenntnis der wichtigsten Architekturmodelle verteilter Systeme
- Datenübertragung im Internet

Inhalte:

- Synchrone und asynchrone Übertragungen
- Fehlertolerante Kodierungen
- Grundlagen der Informationstheorie, insbesondere Präfixcodes
- Netzwerktopologien
- Schichtenmodell
- Verschiedene Protokolle, Internetprotokolle, Ethernet, IP, TCP, UDP,...
- Netzwerkprogrammierung / Interprozesskommunikation
- Sicherheitstechniken
- Verteilte Systeme

Verantwortlichkeiten (Stand 27.06.2011):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Dr. Sandro Wefel
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeit (Stand 06.06.2012):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Master	Physik 120 LP	1.	Wahlpflichtmodul	Fachnote	0/70
Bachelor	Mathematik mit	3. bis 5.	Wahlpflichtmodul	Fachnote	5/154
	Anwendungsfach 180 LP				
Bachelor	Geographie 180 LP	3.	Wahlpflichtmodul	Fachnote	5/125
Bachelor	Wirtschaftsinformatik	3. oder 5.	Wahlpflichtmodul	Fachnote	5/150
	(Business Information				
	Systems) 180 LP				

Bachelor	Informatik 180 LP ab	4.	Pflichtmodul	Fachnote	5/155
	WiSe 2012				
Bachelor	Informatik 180 LP ab	3.	Pflichtmodul	Fachnote	5/160
	WiSe 2011				
Bachelor	Bioinformatik 180 LP	5. bis 6.	Wahlpflichtmodul	Fachnote	5/170
Lehramt	Informatik	5. bis 8.	Wahlpflichtmodul	keine	erfolgreicher
Förderschulen	(Sekundarschule)			Benotung	Abschluss
Lehramt	Informatik (Gymnasium)	5. bis 8.	Wahlpflichtmodul	keine	erfolgreicher
Gymnasien				Benotung	Abschluss

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung mit Übung	2	30	Wintersemester
Selbststudium zur Vorlesung	0	90	Wintersemester
Bearbeiten der Übungsaufgaben	0	15	Wintersemester
Übung	1	15	Wintersemester

Studienleistungen:

- Erfolgreiches Lösen von Übungsaufgaben in einer vorgegebenen Zeit
- Erfolgreiches Vorrechnen in den Übungen

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	100 %

Termine für die Modulleistung:

1.Termin: spätestens am Ende der vorlesungsfreien Zeit des Semesters

1. Wiederholungstermin: spätestens am Ende der vorlesungsfreien Zeit des folgenden Semesters

2. Wiederholungstermin: Erst nach Wiederholung des Moduls. Die maximale Anzahl der zweiten

Wiederholungsmöglichkeiten ist in den Prüfungsordnungen festgelegt.

Modul: Einführung in die Bildverarbeitung

Identifikationsnummer:

INF.02362.03

Lernziele:

- Die Bildverarbeitung beschäftigt sich mit der automatischen Verarbeitung bildhafter Daten, die von unterschiedlichsten Sensoren stammen können. Das Ziel der Verarbeitung ist letzlich die Analyse und Interpretation der in die Daten projezierten Umwelt mit Blick auf eine gegebene Aufgabenstellung. Bildverarbeitung in Abgrenzung zur Bildanalyse arbeiten dabei im wesentlichen mit problemunabhängigen Modellannahmen, wobei diese Abgrenzung unscharft ist.
- In der Veranstaltung sollen die Studierenden die grundlegenden Ansätze und Methoden der automatischen Bildverarbeitung erlernen. Weiterhin sollen sie die Fähigkeit erwerben, diese Methoden für einfache Aufgabenstellungen aus verschiedenen Bereichen einzusetzen.

Inhalte:

- Aufgabenstellung und prinzipieller Aufbau von Bildverarbeitungssystemen
- Bildentstehung und Digitalisierung
- Bildformate
- Binärbildverarbeitung; Schwellwerte, Regionen, Merkmale
- einfache Filter zur Verbesserung von Bildern
- einfache Konturdetektion, Hough-Transformation
- einfache Verfahren zur Regionensegmentierung

Verantwortlichkeiten (Stand 27.06.2011):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Stefan Posch
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeit (Stand 06.06.2012):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Master	Mathematik 120 LP	2.	Wahlpflichtmodul	Fachnote	5/120
Master	Physik 120 LP	2.	Wahlpflichtmodul	Fachnote	0/70
Bachelor	Mathematik mit	4. oder 6.	Wahlpflichtmodul	Fachnote	5/154
	Anwendungsfach 180 LP				
Bachelor	Angewandte	2.	Wahlpflichtmodul	Fachnote	5/160
	Geowissenschaften				
	(Applied Geosciences)				
	180 LP				
Bachelor	Geographie 180 LP	2.	Wahlpflichtmodul	Fachnote	5/125
Bachelor	Informatik 180 LP ab	4.	Wahlpflichtmodul	Fachnote	5/155
	WiSe 2012				
Bachelor	Informatik 180 LP ab	4.	Pflichtmodul	Fachnote	5/160
	WiSe 2011				
Bachelor	Bioinformatik 180 LP	6.	Wahlpflichtmodul	Fachnote	5/170

Lehramt	Informatik	5. bis 8.	Wahlpflichtmodul	keine	erfolgreicher
Förderschulen	(Sekundarschule)			Benotung	Abschluss
Lehramt	Informatik (Gymnasium)	5. bis 8.	Wahlpflichtmodul	keine	erfolgreicher
Gymnasien				Benotung	Abschluss

Teilnahmevoraussetzungen:

Obligatorisch:

Kenntnisse in linearer Algebra und Analysis

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesungen	2	30	Sommersemester
Selbststudium zur Vorlesung	0	45	Sommersemester
Übung	2	30	Sommersemester
Bearbeiten der Übungsaufgaben	0	45	Sommersemester

Studienleistungen:

- Erfolgreiches Lösen von Übungsaufgaben
- Erfolgreiches Vorrechnen von Übungsaufgaben in den Übungen
- regelmässige Teilnahme

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	100 %

Termine für die Modulleistung:

1.Termin: spätestens am Ende der vorlesungsfreien Zeit des Semesters, in dem das

Modul angeboten wurde,

1. Wiederholungstermin: spätestens am Ende der vorlesungsfreien Zeit des folgenden Semesters.

2. Wiederholungstermin: Erst nach Wiederholung des Moduls. Die maximale Anzahl der zweiten

Wiederholungsmöglichkeiten ist in den Prüfungsordnungen festgelegt.

Modul: Einführung in die Computergrafik

Identifikationsnummer:

INF.00887.04

Lernziele:

- Einführung in grundlegende Algorithmen und Prinzipien der Computergrafik
- Grundlage für alle weiterführenden Lehrangebote zur Computergrafik
- Fähigkeit zum Programmieren mit der Grafik-API OpenGL
- Einführung in "real time" und "fotorealistic rendering"

Inhalte:

- Grafik-API OpenGL
- Zeichnen von Grafik-Primitiven
- Transformationen und Projektionen
- Lokale Beleuchtungsmodelle und shading
- Clippen und Sichtbarkeitsberechnung
- Texturierung
- Ray Tracing

Verantwortlichkeiten (Stand 01.07.2011):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Dr. Peter Schenzel
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeit (Stand 06.06.2012):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Master	Mathematik 120 LP	1.	Wahlpflichtmodul	Fachnote	5/120
Master	Wirtschaftsinformatik	1. oder 3.	Wahlpflichtmodul	Fachnote	5/120
	(Business Information				
	Systems) 120 LP				
Master	Wirtschaftsmathematik	1.	Wahlpflichtmodul	Fachnote	5/115
	120 LP				
Master	Physik 120 LP	1.	Wahlpflichtmodul	Fachnote	0/70
Bachelor	Mathematik mit	3. oder 5.	Wahlpflichtmodul	Fachnote	5/154
	Anwendungsfach 180 LP				
Bachelor	Geographie 180 LP	5.	Wahlpflichtmodul	Fachnote	5/125
Bachelor	Informatik 180 LP ab	4.	Wahlpflichtmodul	Fachnote	5/155
	WiSe 2012				
Bachelor	Informatik 180 LP ab	3.	Pflichtmodul	Fachnote	5/160
	WiSe 2011				
Bachelor	Bioinformatik 180 LP	5.	Wahlpflichtmodul	Fachnote	5/170
Lehramt	Informatik	5. bis 8.	Wahlpflichtmodul	keine	erfolgreicher
Förderschulen	(Sekundarschule)			Benotung	Abschluss

Lehramt	Informatik (Gymnasium)	5. bis 8.	Wahlpflichtmodul	keine	erfolgreicher
Gymnasien				Benotung	Abschluss

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

Programmierkenntnisse in C++ Datenstrukturen und effiziente Algorithmen I

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	3	45	Wintersemester
Selbststudium	0	30	Wintersemester
Übung	2	30	Wintersemester
Übungsaufgabe	0	45	Wintersemester

Studienleistungen:

- Regelmäßige Teilnahme in den Übungen
- Erfolgreiches Lösen von Übungs- und Programmieraufgaben (gewisser Prozentsatz)
- Die Lösungen zu Übungs- und Programmieraufgaben erklären können

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	100 %

Termine für die Modulleistung:

1.Termin: spätestens am Ende der vorlesungsfreien Zeit des laufenden Semesters

1. Wiederholungstermin: spätestens am Ende der vorlesungsfreien Zeit des Folgesemesters

2. Wiederholungstermin: Erst nach Wiederholung des Moduls. Die maximale Anzahl der zweiten

Wiederholungsmöglichkeiten ist in den Prüfungsordnungen festgelegt.

Modul: Einführung in die Künstliche Intelligenz

Identifikationsnummer:

INF.02506.04

Lernziele:

- Die Studierenden sollen die Möglichkeiten und Grenzen der Prädikatenlogik für die Darstellung von Wissen und das Ableiten von Schlüssen erkennen und den Umgang mit Inferenzmethoden, insbesondere Resolutionsstrategieen an Beispielen erlernen.
- Ausgehend von den Grenzen der Prädikatenlogik für intelligentes Schließen sollen die Studierenden Erweiterungen der PL1, insbesondere Defaultlogik und Modallogik sowie Logiken für unsicheres Wissen kennenlernen.
- Die Studierenden sollen fundierte Kenntnisse der Programmiersprache Prolog erwerben und die erworbenen Kenntnisse und Fertigkeiten durch die Bearbeitung zweier größerer Projekte für a) die Suche kürzester Wege in Graphen sowie b) der Programmierung einer Erweiterung des Prologinterpreters zum Umgang mit unsicherem Wissen nachweisen.

Inhalte:

- Klassische Prädikatenlogik, Resolutionsprinzip
- Default- und Modallogik
- Grundlagen des Schließens mit unsicherem Wissen (SLOP)
- Prolog
- Suchalgorithmen in Prolog
- Erweiterung des Prologinterpreters

Verantwortlichkeiten (Stand 27.06.2011):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Dr. Christoph Bauer
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeit (Stand 06.06.2012):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Informatik 180 LP ab	5. oder 6.	Wahlpflichtmodul	Fachnote	5/155
	WiSe 2012				
Bachelor	Informatik 180 LP ab	6.	Wahlpflichtmodul	Fachnote	5/160
	WiSe 2011				
Bachelor	Bioinformatik 180 LP	6.	Wahlpflichtmodul	Fachnote	5/170
Lehramt	Informatik	5. bis 8.	Wahlpflichtmodul	keine	erfolgreicher
Förderschulen	(Sekundarschule)			Benotung	Abschluss
Lehramt	Informatik (Gymnasium)	5. bis 8.	Wahlpflichtmodul	keine	erfolgreicher
Gymnasien				Benotung	Abschluss

WiSe ... Wintersemester SoSe ... Sommersemester

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

Modul "Mathematische Grundlagen der Informatik" (Modulleistung, BA Bioinformatik) aus dem Modul "Grundlagen und Konzepte der Modellieruung" Modulleistung "Mathematische Grundlagen der Informatik" BA Informatik) Modul "Einführung in die Informatik für Hörer aller Fakultäten" (Modulleistung, Hörer anderer Studiengänge)

Dauer:

1 Semester

Angebotsturnus:

beginnend im Sommersemester im Wechsel mit Approximatives Schließen

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Sommersemester
Selbststudium	0	30	Sommersemester
Übung	2	30	Sommersemester
Übungsaufgaben	0	60	Sommersemester

Studienleistungen:

- Regelmäßige Teilnahme in den Übungen
- Erfolgreiches Lösen von Übungs- und Programmieraufgaben
- Die Lösungen zu Übungs- und Programmieraufgaben erklärem können

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: spätestens am Ende der vorlesungsfreien Zeit des laufenden Semesters

1. Wiederholungstermin: spätestens am Ende der vorlesungsfreien Zeit des Folgesemesters

2. Wiederholungstermin: Erst nach Wiederholung des Moduls. Die maximale Anzahl der zweiten

Wiederholungsmöglichkeiten ist in den Prüfungsordnungen festgelegt.

Hinweise:

im Sommersemester aller 2 Jahre im Wechsel mit dem Modul "Approximatives Schließen"

Modul: Grundlagen des World Wide Web

Identifikationsnummer:

INF.00896.03

Lernziele:

Nach Abschluss dieses Moduls sollen die Teilnehmenden Folgendes können:

- Die Basistechnologien des WWW erklären (z.B.: "Was geschieht genau, wenn man einen Hyperlink auf einer Webseite anklickt?").
- Technisch einwandfreie Webseiten erstellen
- XML zur Speicherung und zum Austausch kleiner Datenmengen verwenden, dazu DTDs entwerfen und syntaktisch korrektes XML schreiben.
- Einen Webserver konfigurieren (mit relativ geringer weitere Einarbeitung).
- Die Funktionsweise von Suchmaschinen erklären, die Bedürfnisse von Suchmaschinen bei der Entwicklung von Webseiten berücksichtigen.

Inhalte:

- Kurze Einführung in das Internet
- Domain Name System
- URIs Uniform Resource Identifier
- HTTP Hypertext Transfer Protocol
- SGML und XML
- Entwurf von XML DTDs (Document Type Definitions)
- XML Namespaces
- HTML und XHTML
- Einführung in CSS (Cascading Style Sheets)
- Suchmaschinen
- Einführung in die serverseitige Programmierung
- Einführung in JavaScript
- Einführung in Benutzerfreundlichkeit von Webseiten (Usability)

Verantwortlichkeiten (Stand 16.01.2012):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Stefan Brass
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeit (Stand 06.06.2012):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Mathematik mit	3. bis 6.	Wahlpflichtmodul	Fachnote	5/154
	Anwendungsfach 180 LP				
Bachelor	Geographie 180 LP	5.	Wahlpflichtmodul	Fachnote	5/125
Bachelor	Informatik 180 LP ab	5. oder 6.	Wahlpflichtmodul	Fachnote	5/155
	WiSe 2012				
Bachelor	Informatik 180 LP ab	5. oder 6.	Wahlpflichtmodul	Fachnote	5/160
	SoSe 2012				

Bachelor	Bioinformatik 180 LP	5. bis 6.	Wahlpflichtmodul	Fachnote	5/170
Lehramt	Informatik	5. bis 8.	Wahlpflichtmodul	keine	erfolgreicher
Förderschulen	(Sekundarschule)			Benotung	Abschluss
Lehramt	Informatik (Gymnasium)	5. bis 8.	Wahlpflichtmodul	keine	erfolgreicher
Gymnasien				Benotung	Abschluss

Teilnahmevoraussetzungen:

Obligatorisch:

Modul/e:

- Objektorientierte Programmierung

Wünschenswert:

Modul "Rechnernetze und verteilte Systeme" Modul "Datenbanken I"

Dauer:

1 Semester

Angebotsturnus:

nicht festlegbar

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	1	15	Winter- und
			Sommersemester
Selbststudium, wenige Hausaufgaben	0	60	Winter- und
			Sommersemester
Tafelübung, Seminar	1	15	Winter- und
			Sommersemester
Projekt, Praktische Übung	1	30	Winter- und
			Sommersemester
Vorbereitung eines kurzen Seminarvortrags	0	30	Winter- und
			Sommersemester

Studienleistungen:

- Inhaltlich korrekter und didaktisch guter Seminarvortrag (ca. 20-30 min, weitere Präzisierung in der Vorlesung)
- Regelmäßige Teilnahme an den Übungen, aktive Beteiligung (z.B. Beantwortung von Fragen, Diskussionsbeiträge, Präsentation von Lösungen zu Hausaufgaben).
- In Einzelfällen (begründete Ausnahmen) kann der Modulverantwortliche eine mündliche Kurzprüfung als Alternative anbieten

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	100 %

Termine für die Modulleistung:

1.Termin: spätestens am Ende der vorlesungsfreien Zeit des Semesters, in dem das

Modul angeboten wurde

1. Wiederholungstermin: spätestens am Ende der Vorlesungszeit des folgenden Semesters statt

2. Wiederholungstermin: Erst nach Wiederholung des Moduls. Die maximale Anzahl der zweiten

Wiederholungsmöglichkeiten ist in den Prüfungsordnungen festgelegt.

Hinweise:

Angebotsturnus: Unregelmäßig, sofern auch sonst ein ausreichend breites Angebot für den Wahlbereich zur Verfügung steht. Angestrebt ist ein jährlicher Rhythmus.

Modul: Informatik und Gesellschaft

Identifikationsnummer:

INF.03776.02

Lernziele:

- Kenntnisse zur Geschichte und Perspektiven der Informatik
- Kenntnisse zu Auswirkungen der Informatik auf die Persönlichkeit und die Gesellschaft
- Kenntnisse zu philosophischen und ethischen Aspekten der Informatik

Inhalte:

- Geschichte und Perspektiven der Informatik
- Auswirkungen der Informatik auf die Persönlichkeit und die Gesellschaft
- philosophische und ethische Aspekten der Informatik
- Grundlagen der Mensch-Computer-Interaktion
- Datenschutz
- Urheberrecht und digitale Medien
- Informationelle Selbstbestimmung
- Schüler und Virtuelle Medien

Verantwortlichkeiten (Stand 27.06.2011):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	die Professoren des Instituts für
III - Agrar- und		Informatik
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeit (Stand 21.07.2012):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Lehramt	Informatik	5. bis 8.	Pflichtmodul	keine	erfolgreicher
Sekundarschulen	(Sekundarschule)			Benotung	Abschluss
Lehramt	Informatik	3. bis 6.	Pflichtmodul	keine	erfolgreicher
Förderschulen	(Sekundarschule)			Benotung	Abschluss
Lehramt	Informatik (Gymnasium)	5. bis 8.	Pflichtmodul	keine	erfolgreicher
Gymnasien				Benotung	Abschluss

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

nicht festlegbar

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorbereiten eines Seminarvortrages	0	50	Winter- und
			Sommersemester
Seminar	2	30	Winter- und
			Sommersemester
Selbststudium	0	30	Winter- und
			Sommersemester
Schriftliche Ausarbeitung	0	40	Winter- und
			Sommersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulteilleistungen:

Nr.	Modulteilleistungen	1. Wiederholung	2. Wiederholung	Anteil an
				Modulnote
1	schriftliche Ausarbeitung	schriftliche Ausarbeitung	schriftliche Ausarbeitung	50 %
2	Seminarvortrag	Seminarvortrag	Seminarvortrag	50 %

Termine für Modulteilleistung Nr. 1:

1.Termin: Die schriftliche Ausarbeitung hat bis zum Beginn des nachfolgenden

Semesters vorzuliegen.

1. Wiederholungstermin: vor Ende des Folgesemesters

2. Wiederholungstermin: erst nach Wiederholung des MOduls

Termine für Modulteilleistung Nr. 2:

1.Termin: während des Semesters

1. Wiederholungstermin: frühestens 4 Wochen nach dem ersten Termin

2. Wiederholungstermin: erst nach Wiederholdung des Moduls

Hinweise:

In der Regel alle zwei Jahre

Modul: Informatikdidaktik AB

Identifikationsnummer:

INF.03777.03

Moduluntertitel:

Grundlagen des Lehrens und Lernens im Informatikunterricht

Lernziele:

- Grundkenntnisse über Ziele und Inhalte der Didaktik der Informatik sowie Fähigkeit zur Reflexion darüber
- Grundkenntnisse über Bildungsstandards, Kerncurricula, Kompetenzmodelle sowie Fähigkeit zur Reflexion darüber
- Grundkenntnisse über wesentliche informatikdidaktische Ansätze zur Gestaltung von Unterricht
- Grundkenntnisse über wesentliche informatikdidaktische Ansätze zur Gestaltung von Aufgaben und zum Umgang mit Lösungsprozessen
- Grundkenntnisse über wesentliche informatikdidaktische Ansätze zur Diagnose und Beurteilung von Schülerleistungen

Inhalte:

- Ziele des Informatikunterrichts
- Phasen im Informatikunterricht
- Unterrichtsvorbereitung, Stundenplanung
- Motivieren, Differenzieren, Fördern
- Schülerfehler, Diagnose, Beurteilung
- Bildungsstandards, Kerncurricula, Kompetenzmodelle
- Behandlung informatischer Begriffe, Entwicklung von Grundvorstellungen
- Behandlung informatischer Projekte
- Informatische Modellbildungsprozesse, Anwendungs- und Handlungsorientierung
- Aufgaben- und Unterrichtskultur
- Produktorientierung, Modularisierung, Problemlöseprozess
- Leitlinien im Curriculum
- Kenntnis, Analyse und didaktische Aufbereitung geeigneter Praxisfelder
- Didaktische Rekonstruktion fachlichen Wissens, insbesondere didaktische Reduktion (Beispiele)

Verantwortlichkeiten (Stand 31.07.2012):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	die Professoren des Instituts für
III - Agrar- und		Informatik
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeit (Stand 21.07.2012):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Lehramt	Informatik	3. oder 4.	Pflichtmodul	Fachnote	examens-
Sekundarschulen	(Sekundarschule)				relevant
Lehramt	Informatik	4.	Pflichtmodul	Fachnote	examens-
Förderschulen	(Sekundarschule)				relevant
Lehramt	Informatik (Gymnasium)	3. oder 4.	Pflichtmodul	Fachnote	examens-
Gymnasien					relevant
Lehramt	Informatik (Gymnasium)	4.	Pflichtmodul	Fachnote	examens-
Gymnasien					relevant

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

nicht festlegbar

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
`Informatikdidaktik A`	2	30	nicht festlegbar
Selbststudium	0	45	nicht festlegbar
`Informatikdidaktik B`	2	30	nicht festlegbar
Selbststudium	0	45	nicht festlegbar

Studienleistungen:

- keine

Modulvorleistungen:

- regelmäßige und aktive Teilnahme
- Erfolgreiche Bearbeitung der Aufgaben

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur oder Belegarbeit	Belegarbeit	Belegarbeit	100 %

Termine für die Modulleistung:

1.Termin: am Ende des Semesters

1.Wiederholungstermin: spätestens 2 Monate nach Semesterende2.Wiederholungstermin: am Ende des nachfolgenden Semesters

Modul: Informatikdidaktik CDE

Identifikationsnummer:

INF.03778.04

Moduluntertitel:

Informatikunterricht entwickeln und gestalten

Lernziele:

- Grundkenntnisse zum Auswählen und Gestalten informatischer Unterrichtsinhalte sowie Fähigkeit zur Reflexion darüber
- Kenntnis zum Planen und Gestalten einer Unterrichtsstunde sowie von Unterrichtssequenzen und Fähigkeit, ein angemessenes fachliches Niveau festzulegen
- Fähigkeit, fachbezogene Methoden des Lehrens und Lernens sowie Medien adressatengerecht und zweckentsprechend auszuwählen und sie im Unterricht zur Unterstützung fachlicher Lernprozesse anzuwenden
- Fähigkeit, eine Unterrichtsstunde durchzuführen und die eigene Unterrichtstätigkeit sowie Schülerlernprozesse und -leistungen zu analysieren und zu reflektieren
- Grundkenntnisse über Bedeutung und Möglichkeiten von Medien im Unterricht
- Befähigung zum Auswählen, Gestalten und Bewerten von traditionellen und neuen Medien
- Grundkenntnisse zum Auswählen, Gestalten und Bewerten computergestützter Lernumgebungen

Inhalte:

- Grundfragen der Unterrichtsgestaltung
- Kriterien zum Beobachten und Bewerten von Lehr- und Lernprozessen
- Planung, Durchführung und Auswertung eigener und hospitierter Unterrichtsstunden
- Methoden- und Medienkompetenz im Informatikunterricht
- Rolle und Gestaltungsmöglichkeiten von traditionellen und neuen Medien
- Computergestützte Lehr- und Lernumgebungen

Verantwortlichkeiten (Stand 31.07.2012):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	die Professoren des Instituts für
III - Agrar- und		Informatik
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeit (Stand 21.07.2012):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Lehramt	Informatik	4. oder 5.	Pflichtmodul	keine	erfolgreicher
Sekundarschulen	(Sekundarschule)			Benotung	Abschluss
Lehramt	Informatik	4.	Pflichtmodul	keine	erfolgreicher
Förderschulen	(Sekundarschule)			Benotung	Abschluss
Lehramt	Informatik (Gymnasium)	4. oder 5.	Pflichtmodul	keine	erfolgreicher
Gymnasien				Benotung	Abschluss

Teilnahmevoraussetzungen:

Obligatorisch:

Modul/e:

- Informatikdidaktik AB

Wünschenswert:

keine

Dauer:

2 Semester

Angebotsturnus:

nicht festlegbar

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Seminar Informatikdidaktik C - Planen und	1	15	nicht festlegbar
Auswerten von Unterrichtsstunden			
Seminar Informatikdidaktik D - Gestalten	2	30	nicht festlegbar
von Unterrichtsstunden Eigene			
Lehrtätigkeit/ Konsultation/ Hospitation			
(Seminar/SpÜ)			
Stundenentwürfe	0	30	nicht festlegbar
Vorlesung Informatikdidaktik E - Neue	1	15	nicht festlegbar
Medien im Unterricht			
Selbststudium	0	30	nicht festlegbar
Belegarbeiten	0	30	nicht festlegbar

- keine

Modulvorleistungen:

- regelmäßige und aktive Teilnahme
- 2 Stundenentwürfe
- 2 eigene Unterrichtsstunden
- Belegarbeit zu `Neue Medien im Unterricht`

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Belegarbeit Gestalten von	Belegarbeit	Belegarbeit	100 %
Unterrichtsstunden			

Termine für die Modulleistung:

1.Termin: -Belegarbeit: am Ende des Semesters1.Wiederholungstermin: spätestens 2 Monate nach Semesterende

2. Wiederholungstermin: am Ende des nachfolgenden Semesters

Hinweise:

ein bis zwei Semester jährlich, jeweils im Winter- oder Sommersemester

Modul: Informatikdidaktik FG

Identifikationsnummer:

INF.03779.03

Moduluntertitel:

Informatikunterricht analysieren und weiterentwickeln

Lernziele:

- Kenntnisse über Ziele und Inhalte des Informatikunterrichts sowie Fähigkeit zur Reflexion darüber
- Kenntnisse über Bildungsstandards, Einheitliche Prüfungsanforderungen und Möglichkeiten der Leistungsbewertung sowie Fähigkeit zur Reflexion darüber
- Exemplarisch vertiefte Kenntnisse über ausgewählte Themengebiete im Informatikunterricht
- Kenntnisse zum Auswählen und Gestalten informatischer Unterrichtsinhalte
- Kenntnisse über wesentliche informatikbezogene Lehr-Lern-Forschung
- Kenntnisse über wesentliche informatikdidaktische Ansätze zur Gestaltung von Aufgaben und zum Umgang mit Lösungsprozessen in der Sekundarstufe II
- Fähigkeit zum Analysieren und Bewerten von Unterrichtskonzepten sowie zum Weiterentwickeln von Unterrichtsansätzen und -methoden
- Fähigkeit zum Anwenden ausgewählter Methoden fachdidaktischer Forschung in begrenzten eigenen Untersuchungen

Inhalte:

- Ziele und Inhalte des Informatikunterrichts
- Exemplarisch anhand ausgewählter Themengebiete des Informatikunterrichts:
- Behandlung informatischer Begriffe, informatischer Sätze und ihrer Beweise
- Aufgaben- und Unterrichtskultur, Entwicklung von Grundvorstellungen
- Informatische Modellbildungsprozesse, Anwendungs- und Handlungsorientierung
- Leitlinien im Curriculum
- Bildungsstandards, Einheitliche Prüfungsanforderungen, Leistungsbewertung
- Weiterentwicklung des Informatikunterrichts in fachlicher, didaktischer und methodischer Hinsicht
- Analyse, Entwicklung, Erprobung und Evaluation von Lehr- und Lernmaterialien
- Ausgewählte Theorie- und Forschungsansätze in der Fachdidaktik

Verantwortlichkeiten (Stand 31.07.2012):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	die Professoren des Instituts für
III - Agrar- und		Informatik
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeit (Stand 21.07.2012):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Lehramt	Informatik	5. oder 6.	Pflichtmodul	Fachnote	examens-
Sekundarschulen	(Sekundarschule)				relevant
Lehramt	Informatik	6.	Pflichtmodul	Fachnote	examens-
Förderschulen	(Sekundarschule)				relevant
Lehramt	Informatik (Gymnasium)	5. oder 6.	Pflichtmodul	Fachnote	examens-
Gymnasien					relevant
Lehramt	Informatik (Gymnasium)	6.	Pflichtmodul	Fachnote	examens-
Gymnasien					relevant

Teilnahmevoraussetzungen:

Obligatorisch:

Modul/e:

- Informatikdidaktik CDE

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

nicht festlegbar

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Informatikdidaktik F -	1	15	nicht festlegbar
Informatikunterricht in der Sekundarstufe			
Übung Informatikdidaktik F -	1	15	nicht festlegbar
Informatikunterricht in der Sekundarstufe			
Selbststudium	0	30	nicht festlegbar
Seminar Informatikdidaktik G - Didaktik	2	30	nicht festlegbar
der Informatik			
Selbststudium	0	30	nicht festlegbar
Belegarbeit zum Seminar	0	30	nicht festlegbar
`Informatikdidaktik G - Didaktik der			
Informatik`			

- keine

Modulvorleistungen:

- regelmäßige und aktive Teilnahme, erfolgreiche Bearbeitung der Aufgaben zu den Übungen Informatikdidaktik F
- Seminarvortrag einschließlich Skript, Arbeitsmaterialien und Reflexion
- Belegarbeit zum Seminar Informatikdidaktik G Didaktik der Informatik

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündliche Prüfung	mündliche Prüfung	mündliche Prüfung	100 %

Termine für die Modulleistung:

1.Termin: Mündliche Prüfung: am Ende des Semesters1.Wiederholungstermin: spätestens 2 Monate nach Semesterende

2. Wiederholungstermin: am Ende des nachfolgenden Semesters

Hinweise:

ein bis zwei Semester jährlich, jeweils im Winter- oder Sommersemester

Modul: Komponenten- und Service-Orientierte Software

Identifikationsnummer:

INF.05175.01

Lernziele:

Das Modul soll in Komponenten-basierte und Service-Orientierte Softwarearchitekturen sowohl aus Nutzungs- als auch aus technischer Sicht einführen. Ein zentraler Bestandteil des Moduls ist die Durchführung eines kleinen Softwareprojekts, im Rahmen dessen die Konzepte der Vorlesung praktisch erprobt werden sollen.

- Erfahrung mit Softwareentwicklung im Team
- Kenntnis einiger Softwarewerkzeuge sowie die Fähigkeit, diese Softwarewerkzeuge an Hand kleinerer und mittlerer Aufgaben einsetzen zu können

Inhalte:

- 1. Grundlagen von Komponenten-basierten Systemen
- 2. Funktionsweise und Middlewarearchitekturen
- 3. Grundlagen Service-orientierter Softwarearchitekturen
- 4. Web-Services und deren Integration

Verantwortlichkeiten (Stand 08.06.2012):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Wolf Zimmermann, Dr.
III - Agrar- und		Werner Gabrisch
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeit (Stand 20.07.2012):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Informatik 180 LP	6.	Wahlpflichtmodul	Fachnote	5/155
Bachelor	Bioinformatik 180 LP	4. oder 6.	Wahlpflichtmodul	Fachnote	5/170
Lehramt	Informatik (Gymnasium)	5. bis 8.	Wahlpflichtmodul	keine	erfolgreicher
Gymnasien				Benotung	Abschluss

Teilnahmevoraussetzungen:

Obligatorisch:

Modul Softwaretechnik (Studienleistungen)

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Sommersemester
Übung	2	30	Sommersemester
Bearbeitung der Übungsaufgaben im Team	0	90	Sommersemester

Studienleistungen:

- Erfolgreiches Projekt
- Mindestens 50% der erreichbaren Punkte aus den Übungsaufgaben

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: Zu Beginn der vorlesungsfreien Zeit des Semesters

1. Wiederholungstermin: spätestens am Ende der vorlesungsfreien Zeit des Semesters

2. Wiederholungstermin: Erst nach Wiederholung des Moduls. Die maximale Anzahl der zweiten

Wiederholungsmöglichkeiten ist in den Prüfungsordnungen festgelegt.

Modul: Konzepte der Programmierung

Identifikationsnummer:

INF.00685.04

Lernziele:

Programmiersprachen haben viele Konzepte gemeinsam, die man für eine schnelle Einarbeitung in eine neue Programmiersprache kennen muss. Deshalb werden hier unterschiedliche Programmierparadigmen behandelt. Jedes dieser Paradigmen ist eng verwandt mit einer Modellierungstechnik, so dass Modelle, die nach einer Modellierungstechnik entstanden sind, systematisch in Programme umgesetzt werden können. Insbesondere können dann solche Programme leicht verifiziert werden, d.h. nachgewiesen werden, dass die Modelle korrekt implementiert wurden. Im einzelnen verfolgt das Modul daher die folgenden Lernziele:

- Grundkonzepte von Programmiersprachen und deren zu Grunde liegenden Paradigmen zu verstehen und praktisch umzusetzen,
- Die Systematik der Umsetzung von Modellen in Programme zu verstehen und praktisch durchführen, sowie
- Programme gegenüber ihren Modellen zu verifizieren.

Inhalte:

- 1. Funktionales Programmieren: Funktionale Programmierkonzepte, Verifikation und Validierung funktionaler Programme (Qualitätssicherung), Typkonzept, Transformation von Abstrakten Datentypen in funktionale Programme, Grenzen der Berechenbarkeit
- 2. Imperatives Programmieren: Grundlegende Elemente und Konzepte imperativer Sprachen, Verifikation imperativer Programme (Qualitätssicherung), Typkonzept
- 3. Objektorientiertes Programmieren: Objekt-orientierte Programmierkonzepte, Typkonzept, Systematische Transformation aus UML-Klassendiagrammen, Verifikation objekt-orientierter Programme (Qualitätssicherung)
- 4. Logisches Programmieren: Logische Programmierkonzepte, Grundlagen der Logikprogrammierung, SLD-Resolution.

Verantwortlichkeiten (Stand 12.01.2012):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Wolf Zimmermann
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeit (Stand 26.07.2012):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Mathematik mit	2.	Wahlpflichtmodul	Fachnote	5/154
	Anwendungsfach 180 LP				
	ab WiSe 2009				
Bachelor	Mathematik mit	2.	Wahlpflichtmodul	Fachnote	
	Anwendungsfach 180 LP				
Bachelor	Geographie 180 LP	2.	Wahlpflichtmodul	Fachnote	5/125
Bachelor	Wirtschaftsinformatik	6.	Wahlpflichtmodul	Fachnote	5/150
	(Business Information				
	Systems) 180 LP				

Bachelor	Informatik 180 LP ab	3.	Pflichtmodul	Fachnote	5/155
	SoSe 2013				
Bachelor	Informatik 180 LP ab	2.	Pflichtmodul	Fachnote	5/160
	WiSe 2011				
Bachelor	Bioinformatik 180 LP	6.	Wahlpflichtmodul	Fachnote	5/170
Lehramt	Informatik	3.	Pflichtmodul	keine	erfolgreicher
Sekundarschulen	(Sekundarschule)			Benotung	Abschluss
Lehramt	Informatik	4.	Pflichtmodul	Fachnote	examens-
Förderschulen	(Sekundarschule)				relevant
Lehramt	Informatik (Gymnasium)	3.	Pflichtmodul	keine	erfolgreicher
Gymnasien				Benotung	Abschluss
Lehramt	Informatik (Gymnasium)	4.	Pflichtmodul	Fachnote	examens-
Gymnasien					relevant

WiSe ... Wintersemester SoSe ... Sommersemester

Teilnahmevoraussetzungen:

Obligatorisch:

-Modul "Grundlagen und Konzepte der Modellierung" (Modulvorleistung, Informatik, Mathematik, Geographie) bzw. Modul "Mathematische Grundlagen der Informatik" Modul "Konzepte der Modellierung" (Modulvorleistung, Bioinformatik, LAG, LAS) -Modul "Konzepte der Modellierung (Modulvorleistung Wirtschaftsinformatik) -Modul "objektorientierte Programmierung" (Modulvorleistung)

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Sommersemester
Übung	2	30	Sommersemester
Bearbeitung der	0	90	Sommersemester
Übungsaufgaben/Selbststudium			

- keine

Modulvorleistungen:

- Regelmäßige Teilnahme an den Übungen
- Erfolgreiches Lösen von Übungs- und Programmieraufgaben.
- Lösungen zu Übungs- und Programmieraufgaben erklären können

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	100 %

Termine für die Modulleistung:

1.Termin: Am Ende der Vorlesungszeit bzw. zu Beginn der vorlesungsfreien Zeit im

SoSe

1. Wiederholungstermin: Am Ende der vorlesungsfreien Zeit im SoSe

2. Wiederholungstermin: Erst nach Wiederholung des Moduls. Die maximale Anzahl der zweiten

Wiederholungsmöglichkeiten ist in den Prüfungsordnungen festgelegt.

Modul: <u>Mathematische Grundlagen der Informatik und Konzepte der Modellierung</u>

Identifikationsnummer:

INF.05173.01

Lernziele:

Modellieren von IT-Systemen ist eine zentrale Tätigkeit bei der Konstruktion von IT-Systemen aller Art. Mit Modellen möchte man erreichen, dass bereits vor der Umsetzung in Programme oder Hardware ein Verständnis für die Funktionsweise, Struktur und Eigenschaften des IT-Systems entsteht. Insbesondere bei sicherheitskritischen IT-Systemen wie beispielsweise im Automobil, Flugzeug oder Medizintechnik ist eine Überprüfung der Systemeigenschaften auf Modellebene notwendig. Um unerwünschte Eigenschaften auszuschließen ist ein formaler Nachweis (Validerung) und sehr sorgfältiges Arbeiten erforderlich. Aus diesem Grund basieren die Modellierungstechniken meist auf mathematischen Grundlagen wie Mengentheorie, Algebren und Logik. Im einzelnen ergeben sich daher die folgenden Lernziele.

- Mathematisches Grundlagenwissen als Voraussetzung für selbständiges Lernen und Arbeiten
- Überblick über grundlegende Modellierungsmethoden
- Exaktes und gründliches Arbeiten
- Beherrschen der mathematischen Sprache
- Erkennen von Zusammenhängen zwischen verschiedenen Gebieten und Konzepten der Mathematik und Informatik
- Förderung des logischen Denkens und Abstraktionsvermögens
- Verständnis für Validierung, Üben von Beweistechniken
- Verständnis für abstrakte Zusammenhänge, Kenntnis grundlegender mathematischer Methoden, Fähigkeit zum logischen Denken
- Anwendung verschiedener Problemlösestrategien und Beweisverfahren
- Kenntnisse und Verständnis über die Grundkonzepte der Modellierung
- Fähigkeiten einfacher Modelle mit Hilfe von Kalkülen zu validieren

Inhalte:

- 1. Einführung in die Informatik: Was ist Informatik? Datum, Information, Signal, Semiotik, Wissen, Verantwortung von Informatikerinnen bzw. Informatiker, Systembegriff, Modellbegriff, Prinzipien der Modellierung
- 2. Mengen, Relationen, Funktionen, Aussagenlogik, Graphen und Bäume
- 3. Textersetzungssysteme, Grammatiken, Chomsky-Hierarchie, endliche Automaten, Strukturbäume
- 4. Modellierung technischer Systeme: Mealy-Automaten, Moore-Automaten, Petri-Netze, Lebendigkeit, Sicherheit
- 5. Abstrakte Datentypen: Terme und Signaturen, Algebren, Homomorphiesatz, Strukturelle Induktion, Termersetzungssystem
- 6. Logik: Aussagenlogik, Prädikatenlogik, Kalküle, Korrektheit und Vollständigkeit, Konsistenz, Spezifikation mit Vor- und Nachbedingungen
- 7. Objekt-Orientiertes Modellieren: UML Klassendiagramme, UML Objektdiagramme, Klasseninvarianten, Verträge

Verantwortlichkeiten (Stand 19.07.2012):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Wolf Zimmermann
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeit (Stand 20.07.2012):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Informatik 180 LP	1. bis 2.	Pflichtmodul	Fachnote	15/155
Bachelor	Bioinformatik 180 LP	1. bis 2.	Pflichtmodul	Fachnote	15/170
Lehramt	Informatik	1.	Pflichtmodul	keine	erfolgreicher
Sekundarschulen	(Sekundarschule)			Benotung	Abschluss
Lehramt	Informatik (Gymnasium)	1.	Pflichtmodul	keine	erfolgreicher
Gymnasien				Benotung	Abschluss

Teilnah	mevorau	ssetzungen:
---------	---------	-------------

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

2 Semester

Angebotsturnus:

jedes Studienjahr beginnend im Wintersemester

Studentischer Arbeitsaufwand:

450 Stunden

Leistungspunkte:

15 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Mathematische Grundlagen der Informatik	2	30	Wintersemester
und Konzepte der Modellierung 1			
Übung	2	30	Wintersemester
Mathematische Grundlagen der Informatik	2	30	Sommersemester
und Konzepte der Modellierung 2			
Übung	2	30	Sommersemester
Selbststudium, Lösen von Übungsaufgaben	0	90	Wintersemester
Selbststudium, Lösen von Übungsaufgaben	0	90	Sommersemester
Klausurvorbereitung	0	50	Sommersemester
Tutorium	4	60	Winter- und
			Sommersemester
Übungsaufgaben in vorlesungsfreier Zeit	0	40	Wintersemester
(Ferienübungsblatt)			

- Mindestens 50% der Punkte aus den Übungsaufgaben pro Semester
- Lösungen zu Übungsaufgaben auf Anfrage an der Tafel vorrechnen können

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: Innerhalb der ersten vier Wochen nach Vorlesungsende

1.Wiederholungstermin: Mindestens 6 Wochen nach dem 1. Termin2.Wiederholungstermin: Erst nach erneutem Besuch des Moduls

Modul: Objektorientierte Programmierung

Identifikationsnummer:

INF.00677.03

Lernziele:

Die Studierenden sollen:

- die grundlegenden Konstrukte objektorientierter Programmiersprachen erlernen
- Grundkonzepte von Programmiersprachen verstehen
- die gelernten Sprachkonstrukte sinnvoll und mit Verständnis anwenden
- objektorientierte Grundkonzepte verstehen und anwenden
- kleinere objektorientierte Programme selbstständig schreiben

Inhalte:

- 1. Einleitung
- 2. Variablen, Zuweisung, Hintereinanderausführung
- 3. Basisdatentypen und Ausdrücke
- 4. Einfache Ablaufsteuerung
- 5. Prozeduren
- 6. Gültigkeitsbereiche und Blöcke
- 7. Ausnahmebehandlung
- 8. Zusammengesetze Datentypen
- 9. Klassen
- 10. Parametrisierte Klassen
- 11. Vererbung und Polymorphien

Verantwortlichkeiten (Stand 08.06.2012):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Wolf Zimmermann
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeit (Stand 06.06.2012):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor (2-Fach)	Kernfach	1.	Pflichtmodul	Fachnote	5/90
	Wirtschaftsinformatik				
	(Core Subject Business				
	Information Systems) 120				
	LP				
Bachelor	Mathematik mit	1.	Wahlpflichtmodul	Fachnote	5/154
	Anwendungsfach 180 LP				
Bachelor	Physik 180 LP ab WiSe	1.	Wahlpflichtmodul	Fachnote	5/138
	2012				
Bachelor	Physik 180 LP ab WiSe	1.	Wahlpflichtmodul	Fachnote	5/136
	2012				

Bachelor	Geographie 180 LP	1.	Wahlpflichtmodul	Fachnote	0/125
Bachelor	Wirtschaftsinformatik	1.	Pflichtmodul	Fachnote	5/150
	(Business Information				
	Systems) 180 LP				
Bachelor	Wirtschaftsmathematik	1.	Wahlpflichtmodul	Fachnote	5/152
	180 LP				
Bachelor	Informatik 180 LP ab	1.	Pflichtmodul	Fachnote	5/155
	WiSe 2012				
Bachelor	Informatik 180 LP ab	1.	Pflichtmodul	Fachnote	5/160
	SoSe 2012				
Bachelor	Bioinformatik 180 LP	1.	Pflichtmodul	Fachnote	5/170
Lehramt	Informatik	1.	Pflichtmodul	Fachnote	examens-
Sekundarschulen	(Sekundarschule)				relevant
Lehramt	Informatik	1.	Pflichtmodul	Fachnote	examens-
Förderschulen	(Sekundarschule)				relevant
Lehramt	Informatik (Gymnasium)	1.	Pflichtmodul	Fachnote	examens-
Gymnasien					relevant

WiSe ... Wintersemester SoSe ... Sommersemester

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Wintersemester
Bearbeitung der	0	90	Wintersemester
Programmieraufgaben/Selbststudium			
Rechnerübung	2	30	Wintersemester

- Teilnahme an den Übungen
- Jeweils mindestens 50% der erreichbaren Punkte aus den Theorieaufgaben und 50% korrekt gelöste Programmieraufgaben

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	100 %

Termine für die Modulleistung:

1.Termin: spätestens am Ende der vorlesungsfreien Zeit des Semesters

1. Wiederholungstermin: spätestens am Ende der vorlesungsfreien Zeit des folgenden Semesters

2. Wiederholungstermin: erst nach Wiederholung des Moduls und falls insgesamt weniger als 8

zweite Wiederholungen in Anspruch genommen wurden.

Modul: Softwaretechnik (Lehramt)

Identifikationsnummer:

INF.05177.01

Lernziele:

Die Softwaretechnik beschäftigt sich mit der Konstruktion größerer Softwaresysteme. Dazu sind systematische Vorgehensweisen und die Planung eines Softwareprojekts notwendig. Neben diesen Managementaspekten ist ein zentraler Teil die Gestaltung einer Softwarearchitektur, so dass Softwaresysteme auch über einen längeren Zeitraum zu warten und zu pflegen sind.

- Kenntnisse der Vorgehensweisen bei der Erstellung von größeren Softwaresystemen einführen
- Verständnis des Unterschieds `Programmieren im Großen` vs. `Programmieren im Kleinen`

Inhalte:

- 1. Einleitung: Programmieren im Großen vs. Programmieren im Kleinen, Herausforderungen
- 2. Softwareentwicklungsprozesse: Softwareprozessmodelle, Qualitätssicherung,
- 3. Kostenschätzung: Grundbegriffe und Methoden
- 4. Projektmanagement: Grundlagen, Planung, Dokumentation
- 5. Problem- und Systemanalyse: Anforderungsanalyse, Spezifikation, Dokumentation, CASE, UML, Datenflussmodelle, Kontrollflussmodelle, Qualitätssicherung, Testen
- 6. Systementwurf: Entwurfsmethoden, Integrieren, Dokumentieren, Implementierungstechniken, Reengineering, CASE, Testen
- 7. Installation und Abnahme: Qualitätssicherung, Testen
- 8. Pflege und Wartung

Verantwortlichkeiten (Stand 15.08.2014):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Wolf Zimmermann
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeit (Stand 20.07.2012):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Lehramt	Informatik	5.	Pflichtmodul	Fachnote	examens-
Sekundarschulen	(Sekundarschule)				relevant
Lehramt	Informatik (Gymnasium)	5.	Pflichtmodul	Fachnote	examens-
Gymnasien					relevant

Teilnahmevoraussetzungen:

Obligatorisch:

"Mathematische Grundlagen der Informatik und Konzepte der Modellierung" (Studienleistung), Modul "Objektorientierte Programmierung", (Studienleistung)

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	3	45	Wintersemester
Übung	1	15	Wintersemester
Bearbeitung der	0	90	Wintersemester
Übungsaufgaben/Selbststudium			

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündliche Prüfung	mündliche Prüfung	mündliche Prüfung	100 %

Termine für die Modulleistung:

1.Termin: Zu Beginn der vorlesungsfreien Zeit des Semesters

1. Wiederholungstermin: Spätestens zum Ende der vorlesungsfreien Zeit des folgenden Semesters

2. Wiederholungstermin: Erst nach Wiederholung des Moduls. Die maximale Anzahl der zweiten

Wiederholungsmöglichkeiten ist in den Prüfungsordnungen festgelegt.

Modul: <u>Technische Informatik, Betriebssysteme und Rechnernetze</u> (Lehramt)

Identifikationsnummer:

INF.05187.01

Lernziele:

- Kenntnis über Aufbau und Funktionsweise von Prozessoren
- Grundlegende Kenntnisse zu Maschinensprachen und Assembler
- Kenntnisse, wie Zahlen, Zeichen und Texte im Rechner dargestellt werden
- Wissen, welche Aufgaben durch ein Betriebssystem zu erfüllen sind
- Wissen, was Prozesse und Threads sind
- Kenntnis, wie Betriebssysteme Prozesse verwalten und steuern
- Aufgaben der sieben Schichten des OSI-Schichtenmodells zur Kommunikation in Rechnernetzen
- Vertiefte Kenntnisse der Schicht 3 (Vermittlungsschicht) und Schicht 4 (Transportschicht)

Inhalte:

- Historischer Rückblick auf die Entwicklung der Rechner und der Betriebssysteme
- Darstellung von Zeichen und Zahlen in einem Rechner
- Aufbau und Funktionsweise von Ein-Zyklen-Prozessoren
- Prozesse, Prozesszustände, Prozessbeschreibung und Prozesssteuerung
- Threads und ihre Behandlung durch Betriebssysteme
- OSI-Referenzmodell
- Internet-Protokoll, Routing
- Dateisysteme
- Transmission Control Protocol (TCP), User Datagram Protocol (UDP)

Verantwortlichkeiten (Stand 03.07.2012):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Paul Molitor
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeit (Stand 20.07.2012):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Lehramt	Informatik	3.	Pflichtmodul	keine	erfolgreicher
Sekundarschulen	(Sekundarschule)			Benotung	Abschluss
Lehramt	Informatik (Gymnasium)	3.	Pflichtmodul	keine	erfolgreicher
Gymnasien				Benotung	Abschluss

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	3	45	Wintersemester
Teilnahme an den Übung	1	15	Wintersemester
Selbststudium und Prüfungsvorbereitung	0	45	Wintersemester
Bearbeitung der Übungsaufgaben	0	45	Wintersemester

Studienleistungen:

- Erfolgreiches Lösen von Übungsaufgaben
- Erfolgreiches Vorrechnen von Übungsaufgaben in den Übungen

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis zum Ende der vorlesungsfreien Zeit des Semesters

1. Wiederholungstermin: bis zum Ende der vorlesungsfreien Zeit des Folgesemesters

2. Wiederholungstermin: nach Wiederholung des Moduls

Modul: Theorie der Datensicherheit

Identifikationsnummer:

INF.01091.04

Lernziele:

- Einführung in kryptografische Methoden des Datenschutzes
- Methoden der Datensicherung in elektronischen Systemen
- Einführung in mathematische Methoden der Chiffrierung und Dechiffrierung
- Vorstellen kryptografischer Protokolle

Inhalte:

- Klassische kryptografische Verfahren
- Blockchiffren und ihre Betriebsarten
- "public key"-Verschlüsselung
- hash-Funktionen und digitale Signaturen
- Protokolle und Identifikationsverfahren
- "advanced encryption standard"
- kryptografische Infrastrukturen

Verantwortlichkeiten (Stand 27.06.2011):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Dr. Peter Schenzel
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeit (Stand 06.06.2012):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Mathematik mit	4. oder 6.	Wahlpflichtmodul	Fachnote	5/154
	Anwendungsfach 180 LP				
Bachelor	Informatik 180 LP ab	5. oder 6.	Wahlpflichtmodul	Fachnote	5/155
	WiSe 2012				
Bachelor	Informatik 180 LP ab	6.	Wahlpflichtmodul	Fachnote	5/160
	WiSe 2011				
Bachelor	Bioinformatik 180 LP	6.	Wahlpflichtmodul	Fachnote	5/170
Lehramt	Informatik	5. bis 8.	Wahlpflichtmodul	keine	erfolgreicher
Förderschulen	(Sekundarschule)			Benotung	Abschluss
Lehramt	Informatik (Gymnasium)	5. bis 8.	Wahlpflichtmodul	keine	erfolgreicher
Gymnasien				Benotung	Abschluss

WiSe ... Wintersemester SoSe ... Sommersemester

Teilnahmevoraussetzungen:

Obligatorisch:

Modul `Mathematische Grundlagen der Informatik`,(Modulleistung, Studiengänge Bioinformatik, LAG Informatik) Teilleistung `Mathematische Grundlagen der Informatik` aus Modul `Grundlagen und Konzepte der Modellierung

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	3	45	Wintersemester
Selbststudium	0	45	Wintersemester
Übung	1	15	Wintersemester
Bearbeitung von Übungsaufgaben	0	45	Wintersemester

Studienleistungen:

- Regelmäßige Teilnahme an den Übungen
- Erfolgreiches Lösen von Übungs- und Programmieraufgaben (gewisser Prozentsatz)
- Die Lösungen von Übungs- und Programmieraufgaben erklären können

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	mündl./schriftl. Prüfung	100 %

Termine für die Modulleistung:

1.Termin: spätestens am Ende der vorlesungsfreien Zeit des laufenden Semesters

1. Wiederholungstermin: spätestens am Ende der vorlesungsfreien Zeit des Folgesemesters

2. Wiederholungstermin: Erst nach Wiederholung des Moduls. Die maximale Anzahl der zweiten

Wiederholungsmöglichkeiten ist in den Prüfungsordnungen festgelegt.