
GNU Octave
A high-level interactive language for numerical computations

Edition 3 for Octave version 2.0.13
February 1997

John W. Eaton

Published by Network Theory Limited.

15 Royal Park
Clifton
Bristol BS8 3AL
United Kingdom

Email: info@network-theory.co.uk

ISBN 0-9541617-2-6

Cover design by David Nicholls.

Errata for this book will be available from
http://www.network-theory.co.uk/octave/manual/

Copyright c© 1996, 1997 John W. Eaton.
This is the third edition of the Octave documentation, and is consistent
with version 2.0.13 of Octave.
Permission is granted to make and distribute verbatim copies of this man-
ual provided the copyright notice and this permission notice are preserved
on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the en-
tire resulting derived work is distributed under the terms of a permission
notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the same conditions as for modified versions.
Portions of this document have been adapted from the gawk, readline,
gcc, and C library manuals, published by the Free Software Foundation,
59 Temple Place—Suite 330, Boston, MA 02111–1307, USA.

i

Table of Contents

Publisher’s Preface . 1

Author’s Preface . 3
Acknowledgements . 3
How You Can Contribute to Octave . 5
Distribution . 6

1 A Brief Introduction to Octave 7
1.1 Running Octave . 7
1.2 Simple Examples . 7

Creating a Matrix . 7
Matrix Arithmetic . 8
Solving Linear Equations. 8
Integrating Differential Equations 8
Producing Graphical Output . 9
Editing What You Have Typed . 10
Getting Help . 11

1.3 Conventions . 11
1.3.1 Fonts . 11
1.3.2 Evaluation Notation. 12
1.3.3 Printing Notation . 12
1.3.4 Error Messages . 12
1.3.5 Format of Descriptions . 13

1.3.5.1 A Sample Function Description 13
1.3.5.2 A Sample Command Description . . . 14
1.3.5.3 A Sample Variable Description. 14

2 Getting Started . 17
2.1 Invoking Octave . 17

2.1.1 Command Line Options . 17
2.1.2 Startup Files . 20

2.2 Quitting Octave . 21
2.3 Commands for Getting Help . 22
2.4 Command Line Editing . 23

2.4.1 Cursor Motion . 23
2.4.2 Killing and Yanking . 24
2.4.3 Commands For Changing Text 25
2.4.4 Letting Readline Type For You 25

ii GNU Octave

2.4.5 Commands For Manipulating The History . . . 26
2.4.6 Customizing the Prompt 28
2.4.7 Diary and Echo Commands 30

2.5 How Octave Reports Errors . 31
2.6 Executable Octave Programs . 32
2.7 Comments in Octave Programs . 33

3 Data Types . 35
3.1 Built-in Data Types . 35

3.1.1 Numeric Objects . 35
3.1.2 String Objects . 35
3.1.3 Data Structure Objects . 36

3.2 User-defined Data Types . 36
3.3 Object Sizes . 36

4 Numeric Data Types 39
4.1 Matrices . 39

4.1.1 Empty Matrices . 43
4.2 Ranges . 45
4.3 Predicates for Numeric Objects . 45

5 Strings . 47
5.1 Creating Strings . 48
5.2 Searching and Replacing . 49
5.3 String Conversions . 50
5.4 Character Class Functions . 52

6 Data Structures . 55

7 Variables . 59
7.1 Global Variables . 59
7.2 Status of Variables . 61
7.3 Summary of Built-in Variables . 63
7.4 Defaults from the Environment . 68

iii

8 Expressions . 71
8.1 Index Expressions . 71
8.2 Calling Functions . 74

8.2.1 Call by Value . 75
8.2.2 Recursion . 76

8.3 Arithmetic Operators . 76
8.4 Comparison Operators . 78
8.5 Boolean Expressions . 79

8.5.1 Element-by-element Boolean Operators 79
8.5.2 Short-circuit Boolean Operators 80

8.6 Assignment Expressions . 81
8.7 Increment Operators . 83
8.8 Operator Precedence . 84

9 Evaluation . 87

10 Statements . 89
10.1 The if Statement . 89
10.2 The switch Statement . 92
10.3 The while Statement . 93
10.4 The for Statement . 94

10.4.1 Looping Over Structure Elements 95
10.5 The break Statement . 96
10.6 The continue Statement . 97
10.7 The unwind_protect Statement. 98
10.8 The try Statement . 99
10.9 Continuation Lines . 99

11 Functions and Script Files 101
11.1 Defining Functions . 101
11.2 Multiple Return Values . 104
11.3 Variable-length Argument Lists . 106
11.4 Variable-length Return Lists . 107
11.5 Returning From a Function . 108
11.6 Function Files . 109
11.7 Script Files . 111
11.8 Dynamically Linked Functions . 113
11.9 Organization of Functions Distributed with Octave . . 117

12 Error Handling 119

iv GNU Octave

13 Input and Output 123
13.1 Basic Input and Output . 124

13.1.1 Terminal Output . 124
13.1.2 Terminal Input . 126
13.1.3 Simple File I/O . 128

13.2 C-Style I/O Functions . 130
13.2.1 Opening and Closing Files 131
13.2.2 Simple Output . 132
13.2.3 Line-Oriented Input . 132
13.2.4 Formatted Output . 133
13.2.5 Output Conversion for Matrices 134
13.2.6 Output Conversion Syntax 134
13.2.7 Table of Output Conversions 136
13.2.8 Integer Conversions . 137
13.2.9 Floating-Point Conversions 137
13.2.10 Other Output Conversions. 138
13.2.11 Formatted Input . 139
13.2.12 Input Conversion Syntax 140
13.2.13 Table of Input Conversions 141
13.2.14 Numeric Input Conversions 142
13.2.15 String Input Conversions 143
13.2.16 Binary I/O . 143
13.2.17 Temporary Files . 145
13.2.18 End of File and Errors 145
13.2.19 File Positioning . 146

14 Plotting . 149
14.1 Two-Dimensional Plotting . 149
14.2 Specialized Two-Dimensional Plots 155
14.3 Three-Dimensional Plotting . 157
14.4 Plot Annotations. 159
14.5 Multiple Plots on One Page . 159

15 Matrix Manipulation 163
15.1 Finding Elements and Checking Conditions 163
15.2 Rearranging Matrices. 165
15.3 Special Utility Matrices . 168
15.4 Famous Matrices . 171

v

16 Arithmetic . 173
16.1 Utility Functions . 173
16.2 Complex Arithmetic . 175
16.3 Trigonometry . 176
16.4 Sums and Products . 177
16.5 Special Functions . 178
16.6 Mathematical Constants . 180

17 Linear Algebra 183
17.1 Basic Matrix Functions . 183
17.2 Matrix Factorizations . 186
17.3 Functions of a Matrix . 189

18 Nonlinear Equations 191

19 Quadrature . 193
19.1 Functions of One Variable . 193
19.2 Orthogonal Collocation . 194

20 Differential Equations 195
20.1 Ordinary Differential Equations . 195
20.2 Differential-Algebraic Equations . 196

21 Optimization . 199
21.1 Quadratic Programming . 199
21.2 Nonlinear Programming . 199
21.3 Linear Least Squares . 199

22 Statistics . 201

23 Sets . 203

24 Polynomial Manipulations 205

25 Control Theory 209

26 Signal Processing 215

vi GNU Octave

27 Image Processing 219

28 Audio Processing 223

29 System Utilities. 225
29.1 Timing Utilities . 225
29.2 Filesystem Utilities . 231
29.3 Controlling Subprocesses . 234
29.4 Process, Group, and User IDs . 238
29.5 Environment Variables . 239
29.6 Current Working Directory . 239
29.7 Password Database Functions . 240
29.8 Group Database Functions . 241
29.9 System Information . 241

Appendix A Tips and Standards 245
A.1 Writing Clean Octave Programs . 245
A.2 Tips for Making Code Run Faster. 245
A.3 Tips for Documentation Strings . 246
A.4 Tips on Writing Comments . 247
A.5 Conventional Headers for Octave Functions 248

Appendix B Known Causes of Trouble
. 251
B.1 Actual Bugs We Haven’t Fixed Yet 251
B.2 Reporting Bugs . 252
B.3 Have You Found a Bug?. 252
B.4 Where to Report Bugs . 253
B.5 How to Report Bugs . 253
B.6 Sending Patches for Octave . 256
B.7 How To Get Help with Octave . 257

Appendix C Installing Octave 259
C.1 Notes . 262
C.2 Installation Problems . 262
C.3 Binary Distributions . 266

C.3.1 Installing Octave from a Binary Distribution
. 266

C.3.2 Creating a Binary Distribution 267

vii

Appendix D Emacs Octave Support . . . 269
D.1 Installing EOS . 269
D.2 Using Octave Mode . 269
D.3 Running Octave From Within Emacs 274
D.4 Using the Emacs Info Reader for Octave 276

30 Grammar . 279
30.1 Keywords . 279

Appendix E GNU GENERAL PUBLIC
LICENSE . 281
E.1 Preamble . 281
E.2 TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION 282
E.3 Appendix: How to Apply These Terms to Your New

Programs . 288

Other Scientific Packages for the GNU
System . 291
GNU R . 291
GNU Plotutils . 292
GNU Scientific Library . 293
GNU Emacs Calc . 293

Variable Index . 295

Operator Index . 299

Function Index . 301

Concept Index . 307

viii GNU Octave

Publisher’s Preface 1

Publisher’s Preface

This manual documents the use of GNU Octave, an interactive envi-
ronment for numerical computation.

GNU Octave is free software. The term "free software" is sometimes
misunderstood—it has nothing to do with price. It is about freedom. It
refers to your freedom to run, copy, distribute, study, change and improve
the software. With GNU Octave you have all these freedoms.

GNU Octave is part of the GNU Project. The GNU Project was
launched in 1984 to develop a complete Unix-like operating system which
is free software: the GNU system. It was conceived as a way of bringing
back the cooperative spirit that prevailed in the computing community
in earlier days—to make cooperation possible once again by removing the
obstacles to cooperation imposed by the owners of proprietary software.
Variants of the GNU operating system, which use the kernel Linux, are
now widely used; though these systems are often referred to as “Linux”,
they are more accurately called GNU/Linux systems.

The Free Software Foundation is a tax-exempt charity that raises funds
for work on the GNU Project. It is dedicated to promoting computer
users’ right to use, study, copy, modify, and redistribute computer pro-
grams. You can support the Free Software Foundation by making a do-
nation or ordering manuals, t-shirts and especially CD-ROMs. For more
information visit the website www.gnu.org.

Brian Gough
Publisher

January 2002

2 GNU Octave

Author’s Preface 3

Author’s Preface

Octave was originally intended to be companion software for an
undergraduate-level textbook on chemical reactor design being written
by James B. Rawlings of the University of Wisconsin-Madison and John
G. Ekerdt of the University of Texas.

Clearly, Octave is now much more than just another ‘courseware’ pack-
age with limited utility beyond the classroom. Although our initial goals
were somewhat vague, we knew that we wanted to create something that
would enable students to solve realistic problems, and that they could use
for many things other than chemical reactor design problems.

There are those who would say that we should be teaching the students
Fortran instead, because that is the computer language of engineering, but
every time we have tried that, the students have spent far too much time
trying to figure out why their Fortran code crashes and not enough time
learning about chemical engineering. With Octave, most students pick up
the basics quickly, and are using it confidently in just a few hours.

Although it was originally intended to be used to teach reactor design,
it has been used in several other undergraduate and graduate courses in
the Chemical Engineering Department at the University of Texas, and the
math department at the University of Texas has been using it for teaching
differential equations and linear algebra as well. If you find it useful, please
let us know. We are always interested to find out how Octave is being
used in other places.

Virtually everyone thinks that the name Octave has something to do
with music, but it is actually the name of a former professor of mine
who wrote a famous textbook on chemical reaction engineering, and who
was also well known for his ability to do quick ‘back of the envelope’
calculations. We hope that this software will make it possible for many
people to do more ambitious computations just as easily.

Everyone is encouraged to share this software with others under the
terms of the GNU General Public License (see Appendix E [Copying],
page 281) as described at the beginning of this manual. You are also
encouraged to help make Octave more useful by writing and contributing
additional functions for it, and by reporting any problems you may have.

Acknowledgements

Many people have already contributed to Octave’s development. In
addition to John W. Eaton, the following people have helped write parts
of Octave or helped out in various other ways.

4 GNU Octave

• Thomas Baier baier@ci.tuwien.ac.at wrote the original versions
of popen, pclose, execute, sync_system, and async_system.

• Karl Berry karl@cs.umb.edu wrote the kpathsea library that allows
Octave to recursively search directory paths for function and script
files.

• Georg Beyerle gbeyerle@awi-potsdam.de contributed code to save
values in Matlab’s ‘.mat’-file format, and has provided many useful
bug reports and suggestions.

• John Campbell jcc@bevo.che.wisc.edu wrote most of the file and
C-style input and output functions.

• Brian Fox bfox@gnu.org wrote the readline library used for com-
mand history editing, and the portion of this manual that documents
it.

• Klaus Gebhardt gebhardt@crunch.ikp.physik.th-darmstadt.de
ported Octave to OS/2.

• A. Scottedward Hodel A.S.Hodel@eng.auburn.edu contributed a
number of functions including expm, qzval, qzhess, syl, lyap, and
balance.

• Kurt Hornik Kurt.Hornik@ci.tuwien.ac.at provided the
corrcoef, cov, fftconv, fftfilt, gcd, lcd, kurtosis, null,
orth, poly, polyfit, roots, and skewness functions, supplied
documentation for these and numerous other functions, rewrote
the Emacs mode for editing Octave code and provided its
documentation, and has helped tremendously with testing. He has
also been a constant source of new ideas for improving Octave.

• Phil Johnson johnsonp@nicco.sscnet.ucla.edu has helped to
make Linux releases available.

• Friedrich Leisch leisch@ci.tuwien.ac.at provided the
mahalanobis function.

• Ken Neighbors wkn@leland.stanford.edu has provided many use-
ful bug reports and comments on Matlab compatibility.

• Rick Niles niles@axp745.gsfc.nasa.gov rewrote Octave’s plotting
functions to add line styles and the ability to specify an unlimited
number of lines in a single call. He also continues to track down odd
incompatibilities and bugs.

• Mark Odegard meo@sugarland.unocal.com provided the initial im-
plementation of fread, fwrite, feof, and ferror.

• Tony Richardson arichard@stark.cc.oh.us wrote Octave’s image
processing functions as well as most of the original polynomial func-
tions.

Author’s Preface 5

• R. Bruce Tenison Bruce.Tenison@eng.auburn.edu wrote the hess
and schur functions.

• Teresa Twaroch twaroch@ci.tuwien.ac.at provided the functions
gls and ols.

• Andreas Weingessel Andreas.Weingessel@ci.tuwien.ac.at wrote
the audio functions lin2mu, loadaudio, mu2lin, playaudio, record,
saveaudio, and setaudio.

• Fook Fah Yap ffy@eng.cam.ac.uk provided the fft and ifft func-
tions and valuable bug reports for early versions.

Special thanks to the following people and organizations for supporting
the development of Octave:
• Digital Equipment Corporation, for an equipment grant as part of

their External Research Program.
• Sun Microsystems, Inc., for an Academic Equipment grant.
• International Business Machines, Inc., for providing equipment as

part of a grant to the University of Texas College of Engineering.
• Texaco Chemical Company, for providing funding to continue the

development of this software.
• The University of Texas College of Engineering, for providing a Chal-

lenge for Excellence Research Supplement, and for providing an Aca-
demic Development Funds grant.

• The State of Texas, for providing funding through the Texas Ad-
vanced Technology Program under Grant No. 003658-078.

• Noel Bell, Senior Engineer, Texaco Chemical Company, Austin
Texas.

• James B. Rawlings, Professor, University of Wisconsin-Madison, De-
partment of Chemical Engineering.

• Richard Stallman, for writing GNU.

This project would not have been possible without the GNU software
used in and used to produce Octave.

How You Can Contribute to Octave

There are a number of ways that you can contribute to help make
Octave a better system. Perhaps the most important way to contribute
is to write high-quality code for solving new problems, and to make your
code freely available for others to use.

If you find Octave useful, consider providing additional funding to
continue its development. Even a modest amount of additional funding

6 GNU Octave

could make a significant difference in the amount of time that is available
for development and support.

If you cannot provide funding or contribute code, you can still help
make Octave better and more reliable by reporting any bugs you find
and by offering suggestions for ways to improve Octave. See Appendix B
[Trouble], page 251, for tips on how to write useful bug reports.

Distribution

Octave is free software. This means that everyone is free to use it and
free to redistribute it on certain conditions. Octave is not in the public
domain. It is copyrighted and there are restrictions on its distribution,
but the restrictions are designed to ensure that others will have the same
freedom to use and redistribute Octave that you have. The precise con-
ditions can be found in the GNU General Public License that comes with
Octave and that also appears in Appendix E [Copying], page 281.

Octave is available on CD-ROM with various collections of other free
software, and from the Free Software Foundation. Ordering a copy of
Octave from the Free Software Foundation helps to fund the development
of more free software. For more information, write to

Free Software Foundation
59 Temple Place—Suite 330
Boston, MA 02111–1307
USA

Octave is also available on the Internet from ftp://ftp.che.wisc.
edu/pub/octave, and additional information is available from http://
www.che.wisc.edu/octave.

Chapter 1: A Brief Introduction to Octave 7

1 A Brief Introduction to Octave

This manual documents how to run, install and port GNU Octave,
and how to report bugs.

GNU Octave is a high-level language, primarily intended for numerical
computations. It provides a convenient command line interface for solv-
ing linear and nonlinear problems numerically, and for performing other
numerical experiments. It may also be used as a batch-oriented language.

GNU Octave is also freely redistributable software. You may redis-
tribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation. The GPL is in-
cluded in this manual in Appendix E [Copying], page 281.

This document corresponds to Octave version 2.0.13.

1.1 Running Octave

On most systems, the way to invoke Octave is with the shell command
‘octave’. Octave displays an initial message and then a prompt indicating
it is ready to accept input. You can begin typing Octave commands
immediately afterward.

If you get into trouble, you can usually interrupt Octave by typing
Control-C (usually written C-c for short). C-c gets its name from the
fact that you type it by holding down 〈CTRL〉 and then pressing 〈c〉. Doing
this will normally return you to Octave’s prompt.

To exit Octave, type quit, or exit at the Octave prompt.
On systems that support job control, you can suspend Octave by send-

ing it a SIGTSTP signal, usually by typing C-z.

1.2 Simple Examples

The following chapters describe all of Octave’s features in detail, but
before doing that, it might be helpful to give a sampling of some of its
capabilities.

If you are new to Octave, I recommend that you try these examples to
begin learning Octave by using it. Lines marked with ‘octave:13>’ are
lines you type, ending each with a carriage return. Octave will respond
with an answer, or by displaying a graph.

Creating a Matrix

To create a new matrix and store it in a variable so that it you can
refer to it later, type the command

8 GNU Octave

octave:1> a = [1, 1, 2; 3, 5, 8; 13, 21, 34]

Octave will respond by printing the matrix in neatly aligned columns.
Ending a command with a semicolon tells Octave to not print the result
of a command. For example

octave:2> b = rand (3, 2);

will create a 3 row, 2 column matrix with each element set to a random
value between zero and one.

To display the value of any variable, simply type the name of the
variable. For example, to display the value stored in the matrix b, type
the command

octave:3> b

Matrix Arithmetic

Octave has a convenient operator notation for performing matrix arith-
metic. For example, to multiply the matrix a by a scalar value, type the
command

octave:4> 2 * a

To multiply the two matrices a and b, type the command
octave:5> a * b

To form the matrix product aT a, type the command
octave:6> a’ * a

Solving Linear Equations

To solve the set of linear equations ax = b, use the left division oper-
ator, ‘\’:

octave:7> a \ b

This is conceptually equivalent to a−1b, but avoids computing the inverse
of a matrix directly.

If the coefficient matrix is singular, Octave will print a warning mes-
sage and compute a minimum norm solution.

Integrating Differential Equations

Octave has built-in functions for solving nonlinear differential equa-
tions of the form

dx

dt
= f(x, t), x(t = t0) = x0

For Octave to integrate equations of this form, you must first provide
a definition of the function f(x, t). This is straightforward, and may be

Chapter 1: A Brief Introduction to Octave 9

accomplished by entering the function body directly on the command line.
For example, the following commands define the right hand side function
for an interesting pair of nonlinear differential equations. Note that while
you are entering a function, Octave responds with a different prompt, to
indicate that it is waiting for you to complete your input.

octave:8> function xdot = f (x, t)

>

> r = 0.25;

> k = 1.4;

> a = 1.5;

> b = 0.16;

> c = 0.9;

> d = 0.8;

>

> xdot(1) = r*x(1)*(1 - x(1)/k) - a*x(1)*x(2)/(1 + b*x(1));

> xdot(2) = c*a*x(1)*x(2)/(1 + b*x(1)) - d*x(2);

>

> endfunction

Given the initial condition

x0 = [1; 2];

and the set of output times as a column vector (note that the first output
time corresponds to the initial condition given above)

t = linspace (0, 50, 200)’;

it is easy to integrate the set of differential equations:

x = lsode ("f", x0, t);

The function lsode uses the Livermore Solver for Ordinary Differential
Equations, described in A. C. Hindmarsh, ODEPACK, a Systematized
Collection of ODE Solvers, in: Scientific Computing, R. S. Stepleman et
al. (Eds.), North-Holland, Amsterdam, 1983, pages 55–64.

Producing Graphical Output

To display the solution of the previous example graphically, use the
command

plot (t, x)

If you are using the X Window System, Octave will automatically
create a separate window to display the plot. If you are using a terminal
that supports some other graphics commands, you will need to tell Octave
what kind of terminal you have. Type the command

gset term

10 GNU Octave

to see a list of the supported terminal types. Octave uses gnuplot to dis-
play graphics, and can display graphics on any terminal that is supported
by gnuplot.

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35 40 45 50

line 1
line 2

To capture the output of the plot command in a file rather than sending
the output directly to your terminal, you can use a set of commands like
this

gset term postscript
gset output "foo.ps"
replot

This will work for other types of output devices as well. Octave’s gset
command is really just piped to the gnuplot subprocess, so that once you
have a plot on the screen that you like, you should be able to do something
like this to create an output file suitable for your graphics printer.

Or, you can eliminate the intermediate file by using commands like
this

gset term postscript
gset output "|lpr -Pname_of_your_graphics_printer"
replot

Editing What You Have Typed

At the Octave prompt, you can recall, edit, and reissue previous com-
mands using Emacs- or vi-style editing commands. The default keybind-
ings use Emacs-style commands. For example, to recall the previous com-
mand, type Control-p (usually written C-p for short). C-p gets its name
from the fact that you type it by holding down 〈CTRL〉 and then pressing

Chapter 1: A Brief Introduction to Octave 11

〈p〉. Doing this will normally bring back the previous line of input. C-n

will bring up the next line of input, C-b will move the cursor backward
on the line, C-f will move the cursor forward on the line, etc.

A complete description of the command line editing capability is given
in this manual in Section 2.4 [Command Line Editing], page 23.

Getting Help

Octave has an extensive help facility. The same documentation that is
available in printed form is also available from the Octave prompt, because
both forms of the documentation are created from the same input file.

In order to get good help you first need to know the name of the
command that you want to use. This name of the function may not always
be obvious, but a good place to start is to just type help. This will show
you all the operators, reserved words, functions, built-in variables, and
function files. You can then get more help on anything that is listed by
simply including the name as an argument to help. For example,

help plot

will display the help text for the plot function.
Octave sends output that is too long to fit on one screen through a

pager like less or more. Type a 〈RET〉 to advance one line, a 〈SPC〉 to
advance one page, and 〈q〉 to exit the pager.

The part of Octave’s help facility that allows you to read the complete
text of the printed manual from within Octave normally uses a separate
program called Info. When you invoke Info you will be put into a menu
driven program that contains the entire Octave manual. Help for using
Info is provided in this manual in Section 2.3 [Getting Help], page 22.

1.3 Conventions

This section explains the notational conventions that are used in this
manual. You may want to skip this section and refer back to it later.

1.3.1 Fonts

Examples of Octave code appear in this font or form: svd (a). Names
that represent arguments or metasyntactic variables appear in this font or
form: first-number. Commands that you type at the shell prompt some-
times appear in this font or form: ‘octave --no-init-file’. Commands
that you type at the Octave prompt sometimes appear in this font or
form: foo --bar --baz. Specific keys on your keyboard appear in this
font or form: 〈ANY〉.

12 GNU Octave

1.3.2 Evaluation Notation

In the examples in this manual, results from expressions that you
evaluate are indicated with ‘⇒’. For example,

sqrt (2)
⇒ 1.4142

You can read this as “sqrt (2) evaluates to 1.4142”.
In some cases, matrix values that are returned by expressions are dis-

played like this
[1, 2; 3, 4] == [1, 3; 2, 4]

⇒ [1, 0; 0, 1]

and in other cases, they are displayed like this
eye (3)

⇒ 1 0 0
0 1 0
0 0 1

in order to clearly show the structure of the result.
Sometimes to help describe one expression, another expression is

shown that produces identical results. The exact equivalence of expres-
sions is indicated with ‘≡ ’. For example,

rot90 ([1, 2; 3, 4], -1)
≡
rot90 ([1, 2; 3, 4], 3)
≡
rot90 ([1, 2; 3, 4], 7)

1.3.3 Printing Notation

Many of the examples in this manual print text when they are evalu-
ated. Examples in this manual indicate printed text with ‘ � ’. The value
that is returned by evaluating the expression (here 1) is displayed with
‘⇒’ and follows on a separate line.

printf ("foo %s\n", "bar")
� foo bar
⇒ 1

1.3.4 Error Messages

Some examples signal errors. This normally displays an error mes-
sage on your terminal. Error messages are shown on a line starting with
error:.

Chapter 1: A Brief Introduction to Octave 13

struct_elements ([1, 2; 3, 4])
error: struct_elements: wrong type argument ‘matrix’

1.3.5 Format of Descriptions

Functions, commands, and variables are described in this manual in a
uniform format. The first line of a description contains the name of the
item followed by its arguments, if any. The category—function, variable,
or whatever—is printed next to the right margin. The description follows
on succeeding lines, sometimes with examples.

1.3.5.1 A Sample Function Description

In a function description, the name of the function being described
appears first. It is followed on the same line by a list of parameters. The
names used for the parameters are also used in the body of the description.

Here is a description of an imaginary function foo:

Functionfoo (x, y, ...)
The function foo subtracts x from y, then adds the remaining argu-
ments to the result. If y is not supplied, then the number 19 is used
by default.

foo (1, [3, 5], 3, 9)
⇒ [14, 16]

foo (5)
⇒ 14

More generally,
foo (w, x, y, ...)
≡
x - w + y + ...

Any parameter whose name contains the name of a type (e.g., integer,
integer1 or matrix) is expected to be of that type. Parameters named
object may be of any type. Parameters with other sorts of names (e.g.,
new file) are discussed specifically in the description of the function. In
some sections, features common to parameters of several functions are
described at the beginning.

Functions in Octave may be defined in several different ways. The
catagory name for functions may include another name that indicates the
way that the function is defined. These additional tags include

Built-in Function
The function described is written in a language like C++, C,
or Fortran, and is part of the compiled Octave binary.

14 GNU Octave

Loadable Function
The function described is written in a language like C++,
C, or Fortran. On systems that support dynamic linking of
user-supplied functions, it may be automatically linked while
Octave is running, but only if it is needed. See Section 11.8
[Dynamically Linked Functions], page 113.

Function File
The function described is defined using Octave commands
stored in a text file. See Section 11.6 [Function Files],
page 109.

Mapping Function
The function described works element-by-element for matrix
and vector arguments.

1.3.5.2 A Sample Command Description

Command descriptions have a format similar to function descriptions,
except that the word ‘Function’ is replaced by ‘Command. Commands are
functions that may called without surrounding their arguments in paren-
theses. For example, here is the description for Octave’s cd command:

Commandcd dir
Commandchdir dir

Change the current working directory to dir. For example, cd

~/octave changes the current working directory to ‘~/octave’. If the
directory does not exist, an error message is printed and the working
directory is not changed.

1.3.5.3 A Sample Variable Description

A variable is a name that can hold a value. Although any variable can
be set by the user, built-in variables typically exist specifically so that
users can change them to alter the way Octave behaves (built-in variables
are also sometimes called user options). Ordinary variables and built-in
variables are described using a format like that for functions except that
there are no arguments.

Here is a description of the imaginary variable do_what_i_mean_not_
what_i_say.

Built-in Variabledo what i mean not what i say
If the value of this variable is nonzero, Octave will do what you actually
wanted, even if you have typed a completely different and meaningless
list of commands.

Chapter 1: A Brief Introduction to Octave 15

Other variable descriptions have the same format, but ‘Built-in Vari-
able’ is replaced by ‘Variable’, for ordinary variables, or ‘Constant’ for
symbolic constants whose values cannot be changed.

16 GNU Octave

Chapter 2: Getting Started 17

2 Getting Started

This chapter explains some of Octave’s basic features, including how
to start an Octave session, get help at the command prompt, edit the com-
mand line, and write Octave programs that can be executed as commands
from your shell.

2.1 Invoking Octave

Normally, Octave is used interactively by running the program
‘octave’ without any arguments. Once started, Octave reads commands
from the terminal until you tell it to exit.

You can also specify the name of a file on the command line, and
Octave will read and execute the commands from the named file and then
exit when it is finished.

You can further control how Octave starts by using the command-
line options described in the next section, and Octave itself can remind
you of the options available. Type ‘octave --help’ to display all available
options and briefly describe their use (‘octave -h’ is a shorter equivalent).

2.1.1 Command Line Options

Here is a complete list of all the command line options that Octave
accepts.

--debug
-d Enter parser debugging mode. Using this option will cause

Octave’s parser to print a lot of information about the com-
mands it reads, and is probably only useful if you are actually
trying to debug the parser.

--echo-commands
-x Echo commands as they are executed.

--exec-path path
Specify the path to search for programs to run. The value of
path specified on the command line will override any value of
OCTAVE_EXEC_PATH found in the environment, but not any
commands in the system or user startup files that set the
built-in variable EXEC_PATH.

--help
-h
-? Print short help message and exit.

18 GNU Octave

--info-file filename
Specify the name of the info file to use. The value of file-
name specified on the command line will override any value
of OCTAVE_INFO_FILE found in the environment, but not any
commands in the system or user startup files that set the
built-in variable INFO_FILE.

--info-program program
Specify the name of the info program to use. The value
of program specified on the command line will override any
value of OCTAVE_INFO_PROGRAM found in the environment,
but not any commands in the system or user startup files
that set the built-in variable INFO_PROGRAM.

--interactive
-i Force interactive behavior. This can be useful for running

Octave via a remote shell command or inside an Emacs shell
buffer. For another way to run Octave within Emacs, see
Appendix D [Emacs], page 269.

--no-init-file
Don’t read the ‘~/.octaverc’ or ‘.octaverc’ files.

--no-line-editing
Disable command-line editing.

--no-site-file
Don’t read the site-wide ‘octaverc’ file.

--norc
-f Don’t read any of the system or user initialization files at

startup. This is equivalent to using both of the options --
no-init-file and --no-site-file.

--path path
-p path Specify the path to search for function files. The value of

path specified on the command line will override any value
of OCTAVE_PATH found in the environment, but not any com-
mands in the system or user startup files that set the built-in
variable LOADPATH.

--silent
--quiet
-q Don’t print the usual greeting and version message at

startup.

Chapter 2: Getting Started 19

--traditional
--braindead

Set initial values for user-preference variables to the follow-
ing values for compatibility with Matlab.

PS1 = ">> "
PS2 = ""
beep_on_error = 1
default_save_format = "mat-binary"
define_all_return_values = 1
do_fortran_indexing = 1
crash_dumps_octave_core = 0
empty_list_elements_ok = 1
implicit_str_to_num_ok = 1
ok_to_lose_imaginary_part = 1
page_screen_output = 0
prefer_column_vectors = 0
print_empty_dimensions = 0
treat_neg_dim_as_zero = 1
warn_function_name_clash = 0
whitespace_in_literal_matrix = "traditional"

--verbose
-V Turn on verbose output.

--version
-v Print the program version number and exit.

file Execute commands from file.

Octave also includes several built-in variables that contain information
about the command line, including the number of arguments and all of
the options.

Built-in Variableargv
The command line arguments passed to Octave are available in this
variable. For example, if you invoked Octave using the command

octave --no-line-editing --silent

argv would be a string vector with the elements --no-line-editing
and --silent.
If you write an executable Octave script, argv will contain the list of
arguments passed to the script. see Section 2.6 [Executable Octave
Programs], page 32.

20 GNU Octave

Built-in Variableprogram invocation name
Built-in Variableprogram name

When Octave starts, the value of the built-in variable program_
invocation_name is automatically set to the name that was typed at
the shell prompt to run Octave, and the value of program_name is au-
tomatically set to the final component of program_invocation_name.
For example, if you typed ‘/usr/local/bin/octave’ to start Octave,
program_invocation_name would have the value "/usr/local/bin/
octave", and program_name would have the value "octave".
If executing a script from the command line (e.g., octave foo.m) or
using an executable Octave script, the program name is set to the name
of the script. See Section 2.6 [Executable Octave Programs], page 32
for an example of how to create an executable Octave script.

Here is an example of using these variables to reproduce Octave’s
command line.

printf ("%s", program_name);
for i = 1:nargin
printf (" %s", argv(i,:));

endfor
printf ("\n");

See Section 8.1 [Index Expressions], page 71 for an explanation of how
to properly index arrays of strings and substrings in Octave, and See
Section 11.1 [Defining Functions], page 101 for information about the
variable nargin.

2.1.2 Startup Files

When Octave starts, it looks for commands to execute from the fol-
lowing files:

octave-home/share/octave/site/m/startup/octaverc
Where octave-home is the directory in which all of Octave is
installed (the default is ‘/usr/local’). This file is provided
so that changes to the default Octave environment can be
made globally for all users at your site for all versions of
Octave you have installed. Some care should be taken when
making changes to this file, since all users of Octave at your
site will be affected.

octave-home/share/octave/version/m/startup/octaverc
Where octave-home is the directory in which all of Octave is
installed (the default is ‘/usr/local’), and version is the ver-
sion number of Octave. This file is provided so that changes

Chapter 2: Getting Started 21

to the default Octave environment can be made globally for
all users for a particular version of Octave. Some care should
be taken when making changes to this file, since all users of
Octave at your site will be affected.

~/.octaverc
This file is normally used to make personal changes to the
default Octave environment.

.octaverc This file can be used to make changes to the default Octave
environment for a particular project. Octave searches for
this file in the current directory after it reads ‘~/.octaverc’.
Any use of the cd command in the ‘~/.octaverc’ file
will affect the directory that Octave searches for the file
‘.octaverc’.

If you start Octave in your home directory, commands from
from the file ‘~/.octaverc’ will only be executed once.

A message will be displayed as each of the startup files is read if
you invoke Octave with the --verbose option but without the --silent
option.

Startup files may contain any valid Octave commands, including func-
tion definitions.

2.2 Quitting Octave

Built-in Functionexit (status)
Built-in Functionquit (status)

Exit the current Octave session. If the optional integer value status is
supplied, pass that value to the operating system as the Octave’s exit
status.

Built-in Functionatexit (fcn)
Register function to be called when Octave exits. For example,

function print_flops_at_exit ()
printf ("\n%s\n", system ("fortune"));
fflush (stdout);

endfunction
atexit ("print_flops_at_exit");

will print a message when Octave exits.

22 GNU Octave

2.3 Commands for Getting Help

The entire text of this manual is available from the Octave prompt
via the command help -i. In addition, the documentation for individual
user-written functions and variables is also available via the help com-
mand. This section describes the commands used for reading the manual
and the documentation strings for user-supplied functions and variables.
See Section 11.6 [Function Files], page 109, for more information about
how to document the functions you write.

Commandhelp
Octave’s help command can be used to print brief usage-style mes-
sages, or to display information directly from an on-line version of the
printed manual, using the GNU Info browser. If invoked without any
arguments, help prints a list of all the available operators, functions,
and built-in variables. If the first argument is -i, the help command
searches the index of the on-line version of this manual for the given
topics.
For example, the command help help prints a short message describ-
ing the help command, and help -i help starts the GNU Info browser
at this node in the on-line version of the manual.
Once the GNU Info browser is running, help for using it is available
using the command C-h.

The help command can give you information about operators, but not
the comma and semicolons that are used as command separators. To get
help for those, you must type help comma or help semicolon.

Built-in VariableINFO FILE
The variable INFO_FILE names the location of the Octave info file. The
default value is "octave-home/info/octave.info", where octave-
home is the directory where all of Octave is installed.

Built-in VariableINFO PROGRAM
The variable INFO_PROGRAM names the info program to run. Its
initial value is "octave-home/libexec/octave/version/exec/arch/
info", where octave-home is the directory where all of Octave is in-
stalled, version is the Octave version number, and arch is the machine
type. The value of INFO_PROGRAM can be overridden by the environ-
ment variable OCTAVE_INFO_PROGRAM, or the command line argument
--info-program NAME, or by setting the value of the built-in variable
INFO_PROGRAM in a startup script.

Chapter 2: Getting Started 23

Built-in Variablesuppress verbose help message
If the value of suppress_verbose_help_message is nonzero, Octave
will not add additional help information to the end of the output from
the help command and usage messages for built-in commands.

2.4 Command Line Editing

Octave uses the GNU readline library to provide an extensive set of
command-line editing and history features. Only the most common fea-
tures are described in this manual. Please see The GNU Readline Library
manual for more information.

To insert printing characters (letters, digits, symbols, etc.), simply
type the character. Octave will insert the character at the cursor and
advance the cursor forward.

Many of the command-line editing functions operate using control
characters. For example, the character Control-a moves the cursor to
the beginning of the line. To type C-a, hold down 〈CTRL〉 and then press
〈a〉. In the following sections, control characters such as Control-a are
written as C-a.

Another set of command-line editing functions use Meta characters.
On some terminals, you type M-u by holding down 〈META〉 and pressing
〈u〉. If your terminal does not have a 〈META〉 key, you can still type Meta
charcters using two-character sequences starting with ESC. Thus, to en-
ter M-u, you could type 〈ESC〉〈u〉. The ESC character sequences are also
allowed on terminals with real Meta keys. In the following sections, Meta
characters such as Meta-u are written as M-u.

2.4.1 Cursor Motion

The following commands allow you to position the cursor.

C-b Move back one character.

C-f Move forward one character.

〈DEL〉 Delete the character to the left of the cursor.

C-d Delete the character underneath the cursor.

M-f Move forward a word.

M-b Move backward a word.

C-a Move to the start of the line.

C-e Move to the end of the line.

C-l Clear the screen, reprinting the current line at the top.

24 GNU Octave

C-_

C-/ Undo the last thing that you did. You can undo all the way
back to an empty line.

M-r Undo all changes made to this line. This is like typing the
‘undo’ command enough times to get back to the beginning.

The above table describes the most basic possible keystrokes that you
need in order to do editing of the input line. On most terminals, you
can also use the arrow keys in place of C-f and C-b to move forward and
backward.

Notice how C-f moves forward a character, while M-f moves forward
a word. It is a loose convention that control keystrokes operate on char-
acters while meta keystrokes operate on words.

There is also a function available so that you can clear the screen from
within Octave programs.

Built-in Functionclc ()
Built-in Functionhome ()

Clear the terminal screen and move the cursor to the upper left corner.

2.4.2 Killing and Yanking

Killing text means to delete the text from the line, but to save it away
for later use, usually by yanking it back into the line. If the description
for a command says that it ‘kills’ text, then you can be sure that you can
get the text back in a different (or the same) place later.

Here is the list of commands for killing text.

C-k Kill the text from the current cursor position to the end of
the line.

M-d Kill from the cursor to the end of the current word, or if
between words, to the end of the next word.

M-〈DEL〉 Kill from the cursor to the start of the previous word, or if
between words, to the start of the previous word.

C-w Kill from the cursor to the previous whitespace. This is
different than M-〈DEL〉 because the word boundaries differ.

And, here is how to yank the text back into the line. Yanking means
to copy the most-recently-killed text from the kill buffer.

C-y Yank the most recently killed text back into the buffer at
the cursor.

Chapter 2: Getting Started 25

M-y Rotate the kill-ring, and yank the new top. You can only do
this if the prior command is C-y or M-y.

When you use a kill command, the text is saved in a kill-ring. Any
number of consecutive kills save all of the killed text together, so that
when you yank it back, you get it in one clean sweep. The kill ring is not
line specific; the text that you killed on a previously typed line is available
to be yanked back later, when you are typing another line.

2.4.3 Commands For Changing Text

The following commands can be used for entering characters that
would otherwise have a special meaning (e.g., TAB, C-q, etc.), or for quickly
correcting typing mistakes.

C-q

C-v Add the next character that you type to the line verbatim.
This is how to insert things like C-q for example.

M-〈TAB〉 Insert a tab character.

C-t Drag the character before the cursor forward over the char-
acter at the cursor, also moving the cursor forward. If the
cursor is at the end of the line, then transpose the two char-
acters before it.

M-t Drag the word behind the cursor past the word in front of
the cursor moving the cursor over that word as well.

M-u Uppercase the characters following the cursor to the end of
the current (or following) word, moving the cursor to the
end of the word.

M-l Lowecase the characters following the cursor to the end of
the current (or following) word, moving the cursor to the
end of the word.

M-c Uppercase the character following the cursor (or the begin-
ning of the next word if the cursor is between words), moving
the cursor to the end of the word.

2.4.4 Letting Readline Type For You

The following commands allow Octave to complete command and vari-
able names for you.

〈TAB〉 Attempt to do completion on the text before the cursor.
Octave can complete the names of commands and variables.

M-? List the possible completions of the text before the cursor.

26 GNU Octave

Built-in Variablecompletion append char
The value of completion_append_char is used as the character to
append to successful command-line completion attempts. The default
value is " " (a single space).

Built-in Functioncompletion matches (hint)
Generate possible completions given hint.
This function is provided for the benefit of programs like Emacs which
might be controlling Octave and handling user input. The current
command number is not incremented when this function is called. This
is a feature, not a bug.

2.4.5 Commands For Manipulating The History

Octave normally keeps track of the commands you type so that you
can recall previous commands to edit or execute them again. When you
exit Octave, the most recent commands you have typed, up to the number
specified by the variable history_size, are saved in a file. When Octave
starts, it loads an initial list of commands from the file named by the
variable history_file.

Here are the commands for simple browsing and searching the history
list.

〈LFD〉
〈RET〉 Accept the line regardless of where the cursor is. If this

line is non-empty, add it to the history list. If this line was a
history line, then restore the history line to its original state.

C-p Move ‘up’ through the history list.

C-n Move ‘down’ through the history list.

M-< Move to the first line in the history.

M-> Move to the end of the input history, i.e., the line you are
entering!

C-r Search backward starting at the current line and moving ‘up’
through the history as necessary. This is an incremental
search.

C-s Search forward starting at the current line and moving
‘down’ through the history as necessary.

On most terminals, you can also use the arrow keys in place of C-p
and C-n to move through the history list.

Chapter 2: Getting Started 27

In addition to the keyboard commands for moving through the history
list, Octave provides three functions for viewing, editing, and re-running
chunks of commands from the history list.

Commandhistory options
If invoked with no arguments, history displays a list of commands
that you have executed. Valid options are:

-w file Write the current history to the file file. If the name
is omitted, use the default history file (normally
‘~/.octave_hist’).

-r file Read the file file, replacing the current history list with its
contents. If the name is omitted, use the default history
file (normally ‘~/.octave_hist’).

N Only display the most recent N lines of history.

-q Don’t number the displayed lines of history. This is useful
for cutting and pasting commands if you are using the X
Window System.

For example, to display the five most recent commands that you have
typed without displaying line numbers, use the command history -q

5.

Commandedit history options
If invoked with no arguments, edit_history allows you to edit the
history list using the editor named by the variable EDITOR. The com-
mands to be edited are first copied to a temporary file. When you
exit the editor, Octave executes the commands that remain in the file.
It is often more convenient to use edit_history to define functions
rather than attempting to enter them directly on the command line.
By default, the block of commands is executed as soon as you exit the
editor. To avoid executing any commands, simply delete all the lines
from the buffer before exiting the editor.
The edit_history command takes two optional arguments specifying
the history numbers of first and last commands to edit. For example,
the command

edit_history 13

extracts all the commands from the 13th through the last in the history
list. The command

edit_history 13 169

only extracts commands 13 through 169. Specifying a larger num-
ber for the first command than the last command reverses the list of

28 GNU Octave

commands before placing them in the buffer to be edited. If both
arguments are omitted, the previous command in the history list is
used.

Commandrun history
Similar to edit_history, except that the editor is not invoked, and
the commands are simply executed as they appear in the history list.

Built-in VariableEDITOR
A string naming the editor to use with the edit_history command.
If the environment variable EDITOR is set when Octave starts, its value
is used as the default. Otherwise, EDITOR is set to "emacs".

Built-in Variablehistory file
This variable specifies the name of the file used to store command his-
tory. The default value is "~/.octave_hist", but may be overridden
by the environment variable OCTAVE_HISTFILE.

Built-in Variablehistory size
This variable specifies how many entries to store in the history file.
The default value is 1024, but may be overridden by the environment
variable OCTAVE_HISTSIZE.

Built-in Variablesaving history
If the value of saving_history is nonzero, command entered on the
command line are saved in the file specified by the variable history_
file.

2.4.6 Customizing the Prompt

The following variables are available for customizing the appearance of
the command-line prompts. Octave allows the prompt to be customized
by inserting a number of backslash-escaped special characters that are
decoded as follows:

‘\t’ The time.

‘\d’ The date.

‘\n’ Begins a new line by printing the equivalent of a carriage
return followed by a line feed.

‘\s’ The name of the program (usually just ‘octave’).

‘\w’ The current working directory.

Chapter 2: Getting Started 29

‘\W’ The basename of the current working directory.

‘\u’ The username of the current user.

‘\h’ The hostname, up to the first ‘.’.

‘\H’ The hostname.

‘\#’ The command number of this command, counting from when
Octave starts.

‘\!’ The history number of this command. This differs from ‘\#’
by the number of commands in the history list when Octave
starts.

‘\$’ If the effective UID is 0, a ‘#’, otherwise a ‘$’.

‘\nnn’ The character whose character code in octal is nnn.

‘\\’ A backslash.

Built-in VariablePS1
The primary prompt string. When executing interactively, Octave
displays the primary prompt PS1 when it is ready to read a command.
The default value of PS1 is "\s:\#> ". To change it, use a command
like

octave:13> PS1 = "\\u@\\H> "

which will result in the prompt ‘boris@kremvax> ’ for the user ‘boris’
logged in on the host ‘kremvax.kgb.su’. Note that two backslashes
are required to enter a backslash into a string. See Chapter 5 [Strings],
page 47.

Built-in VariablePS2
The secondary prompt string, which is printed when Octave is ex-
pecting additional input to complete a command. For example, when
defining a function over several lines, Octave will print the value of
PS1 at the beginning of each line after the first. The default value of
PS2 is "> ".

Built-in VariablePS4
If Octave is invoked with the --echo-input option, the value of PS4
is printed before each line of input that is echoed. The default value
of PS4 is "+ ". See Section 2.1 [Invoking Octave], page 17, for a de-
scription of --echo-input.

30 GNU Octave

2.4.7 Diary and Echo Commands

Octave’s diary feature allows you to keep a log of all or part of an
interactive session by recording the input you type and the output that
Octave produces in a separate file.

Commanddiary options
Create a list of all commands and the output they produce, mixed
together just as you see them on your terminal. Valid options are:

on Start recording your session in a file called ‘diary’ in your
current working directory.

off Stop recording your session in the diary file.

file Record your session in the file named file.

Without any arguments, diary toggles the current diary state.

Sometimes it is useful to see the commands in a function or script as
they are being evaluated. This can be especially helpful for debugging
some kinds of problems.

Commandecho options
Control whether commands are displayed as they are executed. Valid
options are:

on Enable echoing of commands as they are executed in
script files.

off Disable echoing of commands as they are executed in
script files.

on all Enable echoing of commands as they are executed in
script files and functions.

off all Disable echoing of commands as they are executed in
script files and functions.

If invoked without any arguments, echo toggles the current echo state.

Built-in Variableecho executing commands
This variable may also be used to control the echo state. It may be
the sum of the following values:

1 Echo commands read from script files.

2 Echo commands from functions.

4 Echo commands read from command line.

Chapter 2: Getting Started 31

More than one state can be active at once. For example, a value of 3
is equivalent to the command echo on all.
The value of echo_executing_commands is set by the echo command
and the command line option --echo-input.

2.5 How Octave Reports Errors

Octave reports two kinds of errors for invalid programs.
A parse error occurs if Octave cannot understand something you have

typed. For example, if you misspell a keyword,
octave:13> functon y = f (x) y = x^2; endfunction

Octave will respond immediately with a message like this:
parse error:

functon y = f (x) y = x^2; endfunction
^

For most parse errors, Octave uses a caret (‘^’) to mark the point on
the line where it was unable to make sense of your input. In this case,
Octave generated an error message because the keyword function was
misspelled. Instead of seeing ‘function f’, Octave saw two consecutive
variable names, which is invalid in this context. It marked the error at y
because the first name by itself was accepted as valid input.

Another class of error message occurs at evaluation time. These errors
are called run-time errors, or sometimes evaluation errors because they
occur when your program is being run, or evaluated. For example, if after
correcting the mistake in the previous function definition, you type

octave:13> f ()

Octave will respond with
error: ‘x’ undefined near line 1 column 24

error: evaluating expression near line 1, column 24

error: evaluating assignment expression near line 1, column 22

error: called from ‘f’

This error message has several parts, and gives you quite a bit of
information to help you locate the source of the error. The messages are
generated from the point of the innermost error, and provide a traceback
of enclosing expressions and function calls.

In the example above, the first line indicates that a variable named
‘x’ was found to be undefined near line 1 and column 24 of some function
or expression. For errors occurring within functions, lines are counted
from the beginning of the file containing the function definition. For

32 GNU Octave

errors occurring at the top level, the line number indicates the input line
number, which is usually displayed in the prompt string.

The second and third lines in the example indicate that the error
occurred within an assignment expression, and the last line of the error
message indicates that the error occurred within the function f. If the
function f had been called from another function, for example, g, the list
of errors would have ended with one more line:

error: called from ‘g’

These lists of function calls usually make it fairly easy to trace the
path your program took before the error occurred, and to correct the
error before trying again.

2.6 Executable Octave Programs

Once you have learned Octave, you may want to write self-contained
Octave scripts, using the ‘#!’ script mechanism. You can do this on GNU
systems and on many Unix systems1

For example, you could create a text file named ‘hello’, containing
the following lines:

#! octave-interpreter-name -qf
a sample Octave program
printf ("Hello, world!\n");

(where octave-interpreter-name should be replaced with the full file name
for your Octave binary). After making this file executable (with the chmod
command), you can simply type:

hello

at the shell, and the system will arrange to run Octave as if you had
typed:

octave hello

The line beginning with ‘#!’ lists the full file name of an interpreter
to be run, and an optional initial command line argument to pass to that
interpreter. The operating system then runs the interpreter with the given
argument and the full argument list of the executed program. The first
argument in the list is the full file name of the Octave program. The rest
of the argument list will either be options to Octave, or data files, or both.
The ‘-qf’ option is usually specified in stand-alone Octave programs to
prevent them from printing the normal startup message, and to keep them
from behaving differently depending on the contents of a particular user’s

1 The ‘#!’ mechanism works on Unix systems derived from Berkeley Unix,
System V Release 4, and some System V Release 3 systems.

Chapter 2: Getting Started 33

‘~/.octaverc’ file. See Section 2.1 [Invoking Octave], page 17. Note that
some operating systems may place a limit on the number of characters
that are recognized after ‘#!’.

Self-contained Octave scripts are useful when you want to write a
program which users can invoke without knowing that the program is
written in the Octave language.

If you invoke an executable Octave script with command line argu-
ments, the arguments are available in the built-in variable argv. See
Section 2.1.1 [Command Line Options], page 17. For example, the fol-
lowing program will reproduce the command line that is used to execute
it.

#! /bin/octave -qf
printf ("%s", program_name);
for i = 1:nargin
printf (" %s", argv(i,:));

endfor
printf ("\n");

2.7 Comments in Octave Programs

A comment is some text that is included in a program for the sake of
human readers, and that is not really part of the program. Comments can
explain what the program does, and how it works. Nearly all programming
languages have provisions for comments, because programs are typically
hard to understand without them.

In the Octave language, a comment starts with either the sharp sign
character, ‘#’, or the percent symbol ‘%’ and continues to the end of the
line. The Octave interpreter ignores the rest of a line following a sharp
sign or percent symbol. For example, we could have put the following into
the function f:

function xdot = f (x, t)

usage: f (x, t)
#
This function defines the right hand
side functions for a set of nonlinear
differential equations.

r = 0.25;
...

endfunction

34 GNU Octave

The help command (see Section 2.3 [Getting Help], page 22) is able
to find the first block of comments in a function (even those that are
composed directly on the command line). This means that users of Octave
can use the same commands to get help for built-in functions, and for
functions that you have defined. For example, after defining the function
f above, the command help f produces the output

usage: f (x, t)

This function defines the right hand
side functions for a set of nonlinear
differential equations.

Although it is possible to put comment lines into keyboard-composed
throw-away Octave programs, it usually isn’t very useful, because the
purpose of a comment is to help you or another person understand the
program at a later time.

Chapter 3: Data Types 35

3 Data Types

All versions of Octave include a number of built-in data types, includ-
ing real and complex scalars and matrices, character strings, and a data
structure type.

It is also possible to define new specialized data types by writing a
small amount of C++ code. On some systems, new data types can be
loaded dynamically while Octave is running, so it is not necessary to
recompile all of Octave just to add a new type. See Section 11.8 [Dynami-
cally Linked Functions], page 113 for more information about Octave’s dy-
namic linking capabilities. Section 3.2 [User-defined Data Types], page 36
describes what you must do to define a new data type for Octave.

3.1 Built-in Data Types

The standard built-in data types are real and complex scalars and
matrices, ranges, character strings, and a data structure type. Additional
built-in data types may be added in future versions. If you need a spe-
cialized data type that is not currently provided as a built-in type, you
are encouraged to write your own user-defined data type and contribute
it for distribution in a future release of Octave.

3.1.1 Numeric Objects

Octave’s built-in numeric objects include real and complex scalars and
matrices. All built-in numeric data is currently stored as double precision
numbers. On systems that use the IEEE floating point format, values in
the range of approximately 2.2251×10−308 to 1.7977×10308 can be stored,
and the relative precision is approximately 2.2204 × 10−16. The exact
values are given by the variables realmin, realmax, and eps, respectively.

Matrix objects can be of any size, and can be dynamically reshaped
and resized. It is easy to extract individual rows, columns, or submatri-
ces using a variety of powerful indexing features. See Section 8.1 [Index
Expressions], page 71.

See Chapter 4 [Numeric Data Types], page 39, for more information.

3.1.2 String Objects

A character string in Octave consists of a sequence of characters en-
closed in either double-quote or single-quote marks. Internally, Octave
currently stores strings as matrices of characters. All the indexing opera-
tions that work for matrix objects also work for strings.

See Chapter 5 [Strings], page 47, for more information.

36 GNU Octave

3.1.3 Data Structure Objects

Octave’s data structure type can help you to organize related objects of
different types. The current implementation uses an associative array with
indices limited to strings, but the syntax is more like C-style structures.

See Chapter 6 [Data Structures], page 55, for more information.

3.2 User-defined Data Types

Someday I hope to expand this to include a complete description of
Octave’s mechanism for managing user-defined data types. Until this
feature is documented here, you will have to make do by reading the code
in the ‘ov.h’, ‘ops.h’, and related files from Octave’s ‘src’ directory.

3.3 Object Sizes

The following functions allow you to determine the size of a variable
or expression. These functions are defined for all objects. They return
−1 when the operation doesn’t make sense. For example, Octave’s data
structure type doesn’t have rows or columns, so the rows and columns
functions return −1 for structure arguments.

Function Filecolumns (a)
Return the number of columns of a.

Function Filerows (a)
Return the number of rows of a.

Function Filelength (a)
Return the number of rows of a or the number of columns of a,
whichever is larger.

Function Filesize (a, n)
Return the number rows and columns of a.
With one input argument and one output argument, the result is re-
turned in a 2 element row vector. If there are two output arguments,
the number of rows is assigned to the first, and the number of columns
to the second. For example,

size ([1, 2; 3, 4; 5, 6])
⇒ [3, 2]

[nr, nc] = size ([1, 2; 3, 4; 5, 6])

Chapter 3: Data Types 37

⇒ nr = 3
⇒ nc = 2

If given a second argument of either 1 or 2, size will return only the
row or column dimension. For example

size ([1, 2; 3, 4; 5, 6], 2)
⇒ 2

returns the number of columns in the given matrix.

Function Fileisempty (a)
Return 1 if a is an empty matrix (either the number of rows, or the
number of columns, or both are zero). Otherwise, return 0.

38 GNU Octave

Chapter 4: Numeric Data Types 39

4 Numeric Data Types

A numeric constant may be a scalar, a vector, or a matrix, and it may
contain complex values.

The simplest form of a numeric constant, a scalar, is a single number
that can be an integer, a decimal fraction, a number in scientific (expo-
nential) notation, or a complex number. Note that all numeric constants
are represented within Octave in double-precision floating point format
(complex constants are stored as pairs of double-precision floating point
values). Here are some examples of real-valued numeric constants, which
all have the same value:

105
1.05e+2
1050e-1

To specify complex constants, you can write an expression of the form
3 + 4i
3.0 + 4.0i
0.3e1 + 40e-1i

all of which are equivalent. The letter ‘i’ in the previous example
stands for the pure imaginary constant, defined as

√−1.
For Octave to recognize a value as the imaginary part of a complex

constant, a space must not appear between the number and the ‘i’. If it
does, Octave will print an error message, like this:

octave:13> 3 + 4 i

parse error:

3 + 4 i
^

You may also use ‘j’, ‘I’, or ‘J’ in place of the ‘i’ above. All four forms
are equivalent.

4.1 Matrices

It is easy to define a matrix of values in Octave. The size of the matrix
is determined automatically, so it is not necessary to explicitly state the
dimensions. The expression

a = [1, 2; 3, 4]

results in the matrix

a =
[
1 2
3 4

]

40 GNU Octave

Elements of a matrix may be arbitrary expressions, provided that the
dimensions all make sense when combining the various pieces. For exam-
ple, given the above matrix, the expression

[a, a]

produces the matrix
ans =

1 2 1 2
3 4 3 4

but the expression
[a, 1]

produces the error
error: number of rows must match near line 13, column 6

(assuming that this expression was entered as the first thing on line 13,
of course).

Inside the square brackets that delimit a matrix expression, Octave
looks at the surrounding context to determine whether spaces and newline
characters should be converted into element and row separators, or simply
ignored, so commands like

[linspace (1, 2)]

and
a = [1 2

3 4]

will work. However, some possible sources of confusion remain. For ex-
ample, in the expression

[1 - 1]

the ‘-’ is treated as a binary operator and the result is the scalar 0, but
in the expression

[1 -1]

the ‘-’ is treated as a unary operator and the result is the vector [1, -1
].

Given a = 1, the expression
[1 a’]

results in the single quote character ‘’’ being treated as a transpose op-
erator and the result is the vector [1, 1], but the expression

[1 a ’]

produces the error message
error: unterminated string constant

Chapter 4: Numeric Data Types 41

because to not do so would make it impossible to correctly parse the valid
expression

[a ’foo’]

For clarity, it is probably best to always use commas and semicolons
to separate matrix elements and rows. It is possible to enforce this
style by setting the built-in variable whitespace_in_literal_matrix to
"ignore".

Built-in Variablewhitespace in literal matrix
This variable allows some control over how Octave decides to convert
spaces to commas and semicolons in matrix expressions like [m (1)]
or

[1, 2,
3, 4]

If the value of whitespace_in_literal_matrix is "ignore", Octave
will never insert a comma or a semicolon in a literal matrix list. For
example, the expression [1 2] will result in an error instead of being
treated the same as [1, 2], and the expression

[1, 2,
3, 4]

will result in the vector [1, 2, 3, 4] instead of a matrix.
If the value of whitespace_in_literal_matrix is "traditional",
Octave will convert spaces to a comma between identifiers and ‘(’. For
example, given the matrix

m = [3 2]

the expression
[m (1)]

will be parsed as
[m, (1)]

and will result in
[3 2 1]

and the expression
[1, 2,
3, 4]

will result in a matrix because the newline character is converted to
a semicolon (row separator) even though there is a comma at the end
of the first line (trailing commas or semicolons are ignored). This is
apparently how Matlab behaves.
Any other value for whitespace_in_literal_matrix results in be-
havior that is the same as traditional, except that Octave does not

42 GNU Octave

convert spaces to a comma between identifiers and ‘(’. For example,
the expression

[m (1)]

will produce ‘3’. This is the way Octave has always behaved.

When you type a matrix or the name of a variable whose value is a
matrix, Octave responds by printing the matrix in with neatly aligned
rows and columns. If the rows of the matrix are too large to fit on the
screen, Octave splits the matrix and displays a header before each section
to indicate which columns are being displayed. You can use the following
variables to control the format of the output.

Built-in Variableoutput max field width
This variable specifies the maximum width of a numeric output field.
The default value is 10.

Built-in Variableoutput precision
This variable specifies the minimum number of significant figures to
display for numeric output. The default value is 5.

It is possible to achieve a wide range of output styles by using different
values of output_precision and output_max_field_width. Reasonable
combinations can be set using the format function. See Section 13.1
[Basic Input and Output], page 124.

Built-in Variablesplit long rows
For large matrices, Octave may not be able to display all the columns
of a given row on one line of your screen. This can result in missing
information or output that is nearly impossible to decipher, depending
on whether your terminal truncates or wraps long lines.
If the value of split_long_rows is nonzero, Octave will display the
matrix in a series of smaller pieces, each of which can fit within the
limits of your terminal width. Each set of rows is labeled so that
you can easily see which columns are currently being displayed. For
example:

octave:13> rand (2,10)

ans =

Columns 1 through 6:

0.75883 0.93290 0.40064 0.43818 0.94958 0.16467

0.75697 0.51942 0.40031 0.61784 0.92309 0.40201

Chapter 4: Numeric Data Types 43

Columns 7 through 10:

0.90174 0.11854 0.72313 0.73326

0.44672 0.94303 0.56564 0.82150

The default value of split_long_rows is nonzero.

Octave automatically switches to scientific notation when values be-
come very large or very small. This guarantees that you will see several
significant figures for every value in a matrix. If you would prefer to see
all values in a matrix printed in a fixed point format, you can set the
built-in variable fixed_point_format to a nonzero value. But doing so
is not recommended, because it can produce output that can easily be
misinterpreted.

Built-in Variablefixed point format
If the value of this variable is nonzero, Octave will scale all values in a
matrix so that the largest may be written with one leading digit. The
scaling factor is printed on the first line of output. For example,

octave:1> logspace (1, 7, 5)’
ans =

1.0e+07 *

0.00000
0.00003
0.00100
0.03162
1.00000

Notice that first value appears to be zero when it is actually 1. For
this reason, you should be careful when setting fixed_point_format
to a nonzero value.
The default value of fixed_point_format is 0.

4.1.1 Empty Matrices

A matrix may have one or both dimensions zero, and operations on
empty matrices are handled as described by Carl de Boor in An Empty
Exercise, SIGNUM, Volume 25, pages 2–6, 1990 and C. N. Nett and W.
M. Haddad, in A System-Theoretic Appropriate Realization of the Empty
Matrix Concept, IEEE Transactions on Automatic Control, Volume 38,
Number 5, May 1993. Briefly, given a scalar s, an m × n matrix Mm×n,
and an m × n empty matrix []m×n (with either one or both dimensions

44 GNU Octave

equal to zero), the following are true:

s · []m×n = []m×n · s = []m×n

[]m×n + []m×n = []m×n

[]0×m ·Mm×n = []0×n

Mm×n · []n×0 = []m×0

[]m×0 · []0×n = 0m×n

By default, dimensions of the empty matrix are printed along with
the empty matrix symbol, ‘[]’. The built-in variable print_empty_
dimensions controls this behavior.

Built-in Variableprint empty dimensions
If the value of print_empty_dimensions is nonzero, the dimensions
of empty matrices are printed along with the empty matrix symbol,
‘[]’. For example, the expression

zeros (3, 0)

will print
ans = [](3x0)

Empty matrices may also be used in assignment statements as a con-
venient way to delete rows or columns of matrices. See Section 8.6 [As-
signment Expressions], page 81.

Octave will normally issue a warning if it finds an empty matrix in the
list of elements that make up another matrix. You can use the variable
empty_list_elements_ok to suppress the warning or to treat it as an
error.

Built-in Variableempty list elements ok
This variable controls whether Octave ignores empty matrices in a
matrix list.
For example, if the value of empty_list_elements_ok is nonzero, Oc-
tave will ignore the empty matrices in the expression

a = [1, [], 3, [], 5]

and the variable a will be assigned the value [1, 3, 5].
The default value is "warn".

When Octave parses a matrix expression, it examines the elements of
the list to determine whether they are all constants. If they are, it replaces
the list with a single matrix constant.

Chapter 4: Numeric Data Types 45

Built-in Variablepropagate empty matrices
If the value of propagate_empty_matrices is nonzero, functions like
inverse and svd will return an empty matrix if they are given one as
an argument. The default value is 1.

4.2 Ranges

A range is a convenient way to write a row vector with evenly spaced
elements. A range expression is defined by the value of the first element
in the range, an optional value for the increment between elements, and a
maximum value which the elements of the range will not exceed. The base,
increment, and limit are separated by colons (the ‘:’ character) and may
contain any arithmetic expressions and function calls. If the increment is
omitted, it is assumed to be 1. For example, the range

1 : 5

defines the set of values ‘[1, 2, 3, 4, 5]’, and the range
1 : 3 : 5

defines the set of values ‘[1, 4]’.
Although a range constant specifies a row vector, Octave does not

convert range constants to vectors unless it is necessary to do so. This
allows you to write a constant like ‘1 : 10000’ without using 80,000 bytes
of storage on a typical 32-bit workstation.

Note that the upper (or lower, if the increment is negative) bound
on the range is not always included in the set of values, and that ranges
defined by floating point values can produce surprising results because
Octave uses floating point arithmetic to compute the values in the range.
If it is important to include the endpoints of a range and the number
of elements is known, you should use the linspace function instead (see
Section 15.3 [Special Utility Matrices], page 168).

When Octave parses a range expression, it examines the elements of
the expression to determine whether they are all constants. If they are,
it replaces the range expression with a single range constant.

4.3 Predicates for Numeric Objects

Function Fileis matrix (a)
Return 1 if a is a matrix. Otherwise, return 0.

Function Fileis vector (a)
Return 1 if a is a vector. Otherwise, return 0.

46 GNU Octave

Function Fileis scalar (a)
Return 1 if a is a scalar. Otherwise, return 0.

Function Fileis square (x)
If x is a square matrix, then return the dimension of x. Otherwise,
return 0.

Function Fileis symmetric (x, tol)
If x is symmetric within the tolerance specified by tol, then return the
dimension of x. Otherwise, return 0. If tol is omitted, use a tolerance
equal to the machine precision.

Chapter 5: Strings 47

5 Strings

A string constant consists of a sequence of characters enclosed in either
double-quote or single-quote marks. For example, both of the following
expressions

"parrot"
’parrot’

represent the string whose contents are ‘parrot’. Strings in Octave can
be of any length.

Since the single-quote mark is also used for the transpose operator (see
Section 8.3 [Arithmetic Ops], page 76) but double-quote marks have no
other purpose in Octave, it is best to use double-quote marks to denote
strings.

Some characters cannot be included literally in a string constant. You
represent them instead with escape sequences, which are character se-
quences beginning with a backslash (‘\’).

One use of an escape sequence is to include a double-quote (single-
quote) character in a string constant that has been defined using double-
quote (single-quote) marks. Since a plain double-quote would end the
string, you must use ‘\"’ to represent a single double-quote character as a
part of the string. The backslash character itself is another character that
cannot be included normally. You must write ‘\\’ to put one backslash
in the string. Thus, the string whose contents are the two characters ‘"\’
may be written "\"\\" or ’"\\’. Similarly, the string whose contents are
the two characters ‘’\’ may be written ’\’\\’ or "’\\".

Another use of backslash is to represent unprintable characters such
as newline. While there is nothing to stop you from writing most of these
characters directly in a string constant, they may look ugly.

Here is a table of all the escape sequences used in Octave. They are
the same as those used in the C programming language.

\\ Represents a literal backslash, ‘\’.

\" Represents a literal double-quote character, ‘"’.

\’ Represents a literal single-quote character, ‘’’.

\a Represents the “alert” character, control-g, ASCII code 7.

\b Represents a backspace, control-h, ASCII code 8.

\f Represents a formfeed, control-l, ASCII code 12.

\n Represents a newline, control-j, ASCII code 10.

\r Represents a carriage return, control-m, ASCII code 13.

48 GNU Octave

\t Represents a horizontal tab, control-i, ASCII code 9.

\v Represents a vertical tab, control-k, ASCII code 11.

Strings may be concatenated using the notation for defining matrices.
For example, the expression

["foo" , "bar" , "baz"]

produces the string whose contents are ‘foobarbaz’. See Chapter 4 [Nu-
meric Data Types], page 39 for more information about creating matrices.

5.1 Creating Strings

Function Fileblanks (n)
Return a string of n blanks.

Function Fileint2str (n)
Function Filenum2str (x)

Convert a number to a string. These functions are not very flexible,
but are provided for compatibility with Matlab. For better control
over the results, use sprintf (see Section 13.2.4 [Formatted Output],
page 133).

Built-in Functionsetstr (x)
Convert a matrix to a string. Each element of the matrix is converted
to the corresponding ASCII character. For example,

setstr ([97, 98, 99])
⇒ "abc"

Function Filestrcat (s1, s2, ...)
Return a string containing all the arguments concatenated. For exam-
ple,

s = ["ab"; "cde"];
strcat (s, s, s)

⇒ "ab ab ab "
"cdecdecde"

Built-in Variablestring fill char
The value of this variable is used to pad all strings in a string matrix
to the same length. It should be a single character. The default value
is " " (a single space). For example,

Chapter 5: Strings 49

string_fill_char = "X";
["these"; "are"; "strings"]

⇒ "theseXX"
"areXXXX"
"strings"

Function Filestr2mat (s 1, ..., s n)
Return a matrix containing the strings s 1, . . . , s n as its rows. Each
string is padded with blanks in order to form a valid matrix.
Note: This function is modelled after Matlab. In Octave, you can
create a matrix of strings by [s 1; ...; s n] even if the strings are
not all the same length.

Built-in Functionisstr (a)
Return 1 if a is a string. Otherwise, return 0.

5.2 Searching and Replacing

Function Filedeblank (s)
Removes the trailing blanks from the string s.

Function Filefindstr (s, t, overlap)
Return the vector of all positions in the longer of the two strings s
and t where an occurrence of the shorter of the two starts. If the
optional argument overlap is nonzero, the returned vector can include
overlapping positions (this is the default). For example,

findstr ("ababab", "a")
⇒ [1, 3, 5]

findstr ("abababa", "aba", 0)
⇒ [1, 5]

Function Fileindex (s, t)
Return the position of the first occurrence of the string t in the string
s, or 0 if no occurrence is found. For example,

index ("Teststring", "t")
⇒ 4

Note: This function does not work for arrays of strings.

Function Filerindex (s, t)
Return the position of the last occurrence of the string t in the string
s, or 0 if no occurrence is found. For example,

50 GNU Octave

rindex ("Teststring", "t")
⇒ 6

Note: This function does not work for arrays of strings.

Function Filesplit (s, t)
Divides the string s into pieces separated by t, returning the result
in a string array (padded with blanks to form a valid matrix). For
example,

split ("Test string", "t")
⇒ "Tes "

" s "
"ring"

Function Filestrcmp (s1, s2)
Compares two strings, returning 1 if they are the same, and 0 other-
wise.
Note: For compatibility with Matlab, Octave’s strcmp function re-
turns 1 if the strings are equal, and 0 otherwise. This is just the
opposite of the corresponding C library function.

Function Filestrrep (s, x, y)
Replaces all occurrences of the substring x of the string s with the
string y. For example,

strrep ("This is a test string", "is", "&%$")
⇒ "Th&%$ &%$ a test string"

Function Filesubstr (s, beg, len)
Return the substring of s which starts at character number beg and is
len characters long. For example,

substr ("This is a test string", 6, 9)
⇒ "is a test"

Note: This function is patterned after AWK. You can get
the same result by s (beg : (beg + len - 1)).

5.3 String Conversions

Function Filebin2dec (s)
Return a decimal number corresponding to the binary number repre-
sented as a string of zeros and ones. For example,

bin2dec ("1110")
⇒ 14

Chapter 5: Strings 51

Function Filedec2bin (n)
Return a binary number corresponding the nonnegative decimal num-
ber n, as a string of ones and zeros. For example,

dec2bin (14)
⇒ "1110"

Function Filedec2hex (n)
Return the hexadecimal number corresponding to the nonnegative dec-
imal number n, as a string. For example,

dec2hex (2748)
⇒ "abc"

Function Filehex2dec (s)
Return the decimal number corresponding to the hexadecimal number
stored in the string s. For example,

hex2dec ("12B")
⇒ 299

hex2dec ("12b")
⇒ 299

Function Filestr2num (s)
Convert the string s to a number.

Function Filetoascii (s)
Return ASCII representation of s in a matrix. For example,

toascii ("ASCII")
⇒ [65, 83, 67, 73, 73]

Function Filetolower (s)
Return a copy of the string s, with each upper-case character replaced
by the corresponding lower-case one; nonalphabetic characters are left
unchanged. For example,

tolower ("MiXeD cAsE 123")
⇒ "mixed case 123"

Function Filetoupper (s)
Return a copy of the string s, with each lower-case character replaced
by the corresponding upper-case one; nonalphabetic characters are left
unchanged. For example,

toupper ("MiXeD cAsE 123")
⇒ "MIXED CASE 123"

52 GNU Octave

Built-in Functionundo string escapes (s)
Converts special characters in strings back to their escaped forms. For
example, the expression

bell = "\a";

assigns the value of the alert character (control-g, ASCII code 7) to
the string variable bell. If this string is printed, the system will ring
the terminal bell (if it is possible). This is normally the desired out-
come. However, sometimes it is useful to be able to print the original
representation of the string, with the special characters replaced by
their escape sequences. For example,

octave:13> undo_string_escapes (bell)
ans = \a

replaces the unprintable alert character with its printable representa-
tion.

Built-in Variableimplicit num to str ok
If the value of implicit_num_to_str_ok is nonzero, implicit conver-
sions of numbers to their ASCII character equivalents are allowed when
strings are constructed using a mixture of strings and numbers in ma-
trix notation. Otherwise, an error message is printed and control is
returned to the top level. The default value is 0. For example,

["f", 111, 111]
⇒ "foo"

Built-in Variableimplicit str to num ok
If the value of implicit_str_to_num_ok is nonzero, implicit conver-
sions of strings to their numeric ASCII equivalents are allowed. Oth-
erwise, an error message is printed and control is returned to the top
level. The default value is 0.

5.4 Character Class Functions

Octave also provides the following character class test functions pat-
terned after the functions in the standard C library. They all operate
on string arrays and return matrices of zeros and ones. Elements that
are nonzero indicate that the condition was true for the corresponding
character in the string array. For example,

isalpha ("!Q@WERT^Y&")
⇒ [0, 1, 0, 1, 1, 1, 1, 0, 1, 0]

Chapter 5: Strings 53

Mapping Functionisalnum (s)
Return 1 for characters that are letters or digits (isalpha (a) or
isdigit () is true).

Mapping Functionisalpha (s)
Return true for characters that are letters (isupper (a) or islower
() is true).

Mapping Functionisascii (s)
Return 1 for characters that are ASCII (in the range 0 to 127 decimal).

Mapping Functioniscntrl (s)
Return 1 for control characters.

Mapping Functionisdigit (s)
Return 1 for characters that are decimal digits.

Mapping Functionisgraph (s)
Return 1 for printable characters (but not the space character).

Mapping Functionislower (s)
Return 1 for characters that are lower case letters.

Mapping Functionisprint (s)
Return 1 for printable characters (including the space character).

Mapping Functionispunct (s)
Return 1 for punctuation characters.

Mapping Functionisspace (s)
Return 1 for whitespace characters (space, formfeed, newline, carriage
return, tab, and vertical tab).

Mapping Functionisupper (s)
Return 1 for upper case letters.

Mapping Functionisxdigit (s)
Return 1 for characters that are hexadecimal digits.

54 GNU Octave

Chapter 6: Data Structures 55

6 Data Structures

Octave includes support for organizing data in structures. The current
implementation uses an associative array with indices limited to strings,
but the syntax is more like C-style structures. Here are some examples of
using data structures in Octave.

Elements of structures can be of any value type. For example, the
three expressions

x.a = 1
x.b = [1, 2; 3, 4]
x.c = "string"

create a structure with three elements. To print the value of the structure,
you can type its name, just as for any other variable:

octave:2> x
x =
{
a = 1
b =

1 2
3 4

c = string
}

Note that Octave may print the elements in any order.
Structures may be copied.
octave:1> y = x
y =
{
a = 1
b =

1 2
3 4

c = string
}

Since structures are themselves values, structure elements may refer-
ence other structures. The following statements change the value of the
element b of the structure x to be a data structure containing the single
element d, which has a value of 3.

56 GNU Octave

octave:1> x.b.d = 3
x.b.d = 3
octave:2> x.b
ans =
{
d = 3

}
octave:3> x
x =
{
a = 1
b =
{

d = 3
}

c = string
}

Note that when Octave prints the value of a structure that contains
other structures, only a few levels are displayed. For example,

octave:1> a.b.c.d.e = 1;
octave:2> a
a =
{
b =
{

c = <structure>
}

}

This prevents long and confusing output from large deeply nested struc-
tures.

Built-in Variablestruct levels to print
You can tell Octave how many structure levels to display by setting
the built-in variable struct_levels_to_print. The default value is
2.

Functions can return structures. For example, the following function
separates the real and complex parts of a matrix and stores them in two
elements of the same structure variable.

octave:1> function y = f (x)
> y.re = real (x);

Chapter 6: Data Structures 57

> y.im = imag (x);
> endfunction

When called with a complex-valued argument, f returns the data
structure containing the real and imaginary parts of the original func-
tion argument.

octave:2> f (rand (2) + rand (2) * I);
ans =
{
im =

0.26475 0.14828
0.18436 0.83669

re =

0.040239 0.242160
0.238081 0.402523

}

Function return lists can include structure elements, and they may be
indexed like any other variable. For example,

octave:1> [x.u, x.s(2:3,2:3), x.v] = svd ([1, 2; 3, 4])
x.u =

-0.40455 -0.91451
-0.91451 0.40455

x.s =

0.00000 0.00000 0.00000
0.00000 5.46499 0.00000
0.00000 0.00000 0.36597

x.v =

-0.57605 0.81742
-0.81742 -0.57605

It is also possible to cycle through all the elements of a structure in a
loop, using a special form of the for statement (see Section 10.4 [The for
Statement], page 94)

The following functions are available to give you information about
structures.

58 GNU Octave

Built-in Functionis struct (expr)
Return 1 if the value of the expression expr is a structure.

Built-in Functionstruct contains (expr, name)
Return 1 if the expression expr is a structure and it includes an element
named name. The first argument must be a structure and the second
must be a string.

Built-in Functionstruct elements (struct)
Return a list of strings naming the elements of the structure struct. It
is an error to call struct_elements with an argument that is not a
structure.

Chapter 7: Variables 59

7 Variables

Variables let you give names to values and refer to them later. You
have already seen variables in many of the examples. The name of a
variable must be a sequence of letters, digits and underscores, but it may
not begin with a digit. Octave does not enforce a limit on the length of
variable names, but it is seldom useful to have variables with names longer
than about 30 characters. The following are all valid variable names

x
x15
__foo_bar_baz__
fucnrdthsucngtagdjb

However, names like __foo_bar_baz__ that begin and end with two un-
derscores are understood to be reserved for internal use by Octave. You
should not use them in code you write, except to access Octave’s docu-
mented internal variables and built-in symbolic constants.

Case is significant in variable names. The symbols a and A are distinct
variables.

A variable name is a valid expression by itself. It represents the vari-
able’s current value. Variables are given new values with assignment oper-
ators and increment operators. See Section 8.6 [Assignment Expressions],
page 81.

A number of variables have special built-in meanings. For example,
ans holds the most recently computed result, and pi names the ratio of
the circumference of a circle to its diameter. See Section 7.3 [Summary of
Built-in Variables], page 63, for a list of all the predefined variables. Some
of these built-in symbols are constants and may not be changed. Others
can be used and assigned just like all other variables, but their values are
also used or changed automatically by Octave.

Variables in Octave do not have fixed types, so it is possible to first
store a numeric value in a variable and then to later use the same name
to hold a string value in the same program. Variables may not be used
before they have been given a value. Doing so results in an error.

7.1 Global Variables

A variable that has been declared global may be accessed from within
a function body without having to pass it as a formal parameter.

A variable may be declared global using a global declaration state-
ment. The following statements are all global declarations.

global a

60 GNU Octave

global b = 2
global c = 3, d, e = 5

It is necessary declare a variable as global within a function body in
order to access it. For example,

global x
function f ()
x = 1;

endfunction
f ()

does not set the value of the global variable x to 1. In order to change
the value of the global variable x, you must also declare it to be global
within the function body, like this

function f ()
global x;
x = 1;

endfunction

Passing a global variable in a function parameter list will make a local
copy and not modify the global value. For example, given the function

function f (x)
x = 0

endfunction

and the definition of x as a global variable at the top level,

global x = 13

the expression

f (x)

will display the value of x from inside the function as 0, but the value of
x at the top level remains unchanged, because the function works with a
copy of its argument.

Built-in Variablewarn comma in global decl
If the value of warn_comma_in_global_decl is nonzero, a warning is
issued for statements like

global a = 1, b

which makes the variables a and b global and assigns the value 1 to
the variable a, because in this context, the comma is not interpreted
as a statement separator.
The default value of warn_comma_in_global_decl is nonzero.

Chapter 7: Variables 61

Built-in Variableinitialize global variables
If the value of initialize_global_variables is nonzero, global vari-
ables are initialized to the value of the built-in variable default_
global_variable_value.
the default value of initialize_global_variables is zero.

Built-in Variabledefault global variable value
If initialize_global_variables is nonzero, the value of default_
glbaol_variable_value is used as the initial value of global variables
that are not explicitly initialized. for example,

initialize_global_variables = 1;
default_global_variable_value = 13;
global foo;
foo

⇒ 13

the variable default_global_variable_value is initially undefined.

Built-in Functionis global (name)
Return 1 if name is globally visible. Otherwise, return 0. For example,

global x
is_global ("x")

⇒ 1

7.2 Status of Variables

Commandclear options pattern . . .
Delete the names matching the given patterns from the symbol table.
The pattern may contain the following special characters:

? Match any single character.

* Match zero or more characters.

[list] Match the list of characters specified by list. If the first
character is ! or ^, match all characters except those
specified by list. For example, the pattern ‘[a-zA-Z]’
will match all lower and upper case alphabetic characters.

For example, the command
clear foo b*r

clears the name foo and all names that begin with the letter b and
end with the letter r.

62 GNU Octave

If clear is called without any arguments, all user-defined variables
(local and global) are cleared from the symbol table. If clear is called
with at least one argument, only the visible names matching the argu-
ments are cleared. For example, suppose you have defined a function
foo, and then hidden it by performing the assignment foo = 2. Exe-
cuting the command clear foo once will clear the variable definition
and restore the definition of foo as a function. Executing clear foo

a second time will clear the function definition.
This command may not be used within a function body.

Commandwho options pattern . . .
Commandwhos options pattern . . .

List currently defined symbols matching the given patterns. The fol-
lowing are valid options. They may be shortened to one character but
may not be combined.

-all List all currently defined symbols.

-builtins List built-in variables and functions. This includes all
currently compiled function files, but does not include all
function files that are in the LOADPATH.

-functions
List user-defined functions.

-long Print a long listing including the type and dimensions of
any symbols. The symbols in the first column of output
indicate whether it is possible to redefine the symbol, and
whether it is possible for it to be cleared.

-variables
List user-defined variables.

Valid patterns are the same as described for the clear command above.
If no patterns are supplied, all symbols from the given category are
listed. By default, only user defined functions and variables visible in
the local scope are displayed.
The command whos is equivalent to who -long.

Built-in Functionexist (name)
Return 1 if the name exists as a variable, 2 if the name (after appending
‘.m’) is a function file in the path, 3 if the name is a ‘.oct’ file in the
path, or 5 if the name is a built-in function. Otherwise, return 0.

Built-in Functiondocument (symbol, text)
Set the documentation string for symbol to text.

Chapter 7: Variables 63

Commandtype options name . . .
Display the definition of each name that refers to a function.
Normally also displays if each name is user-defined or builtin; the -q
option suppresses this behaviour.
Currently, Octave can only display functions that can be compiled
cleanly, because it uses its internal representation of the function to
recreate the program text.
Comments are not displayed because Octave’s parser currently dis-
cards them as it converts the text of a function file to its internal
representation. This problem may be fixed in a future release.

Commandwhich name . . .
Display the type of each name. If name is defined from a function file,
the full name of the file is also displayed.

7.3 Summary of Built-in Variables

Here is a summary of all of Octave’s built-in variables along with cross
references to additional information and their default values. In the fol-
lowing table octave-home stands for the root directory where all of Octave
is installed (the default is ‘/usr/local’, version stands for the Octave ver-
sion number (for example, 2.0.13) and arch stands for the type of system
for which Octave was compiled (for example, i586-pc-linux-gnu).

DEFAULT_LOADPATH
See Section 11.6 [Function Files], page 109.

Default value: ".:octave-home/lib/version".

EDITOR See Section 2.4.5 [Commands For History], page 26.

Default value: "emacs".

EXEC_PATH See Section 29.3 [Controlling Subprocesses], page 234.

Default value: ":$PATH".

INFO_FILE See Section 2.3 [Getting Help], page 22.

Default value: "octave-home/info/octave.info".

INFO_PROGRAM
See Section 2.3 [Getting Help], page 22.

Default value: "octave-home/libexec/octave/version/
exec/arch/info".

64 GNU Octave

LOADPATH See Section 11.6 [Function Files], page 109.

Default value: ":", which tells Octave to use the directories
specified by the built-in variable DEFAULT_LOADPATH.

OCTAVE_HOME
Default value: "/usr/local".

PAGER See Chapter 13 [Input and Output], page 123.

Default value: "less", or "more".

PS1 See Section 2.4.6 [Customizing the Prompt], page 28.

Default value: "\s:\#> ".

PS2 See Section 2.4.6 [Customizing the Prompt], page 28.

Default value: "> ".

PS4 See Section 2.4.6 [Customizing the Prompt], page 28.

Default value: "+ ".

auto_unload_dot_oct_files
See Section 11.8 [Dynamically Linked Functions], page 113.

Default value: 0.

automatic_replot
See Section 14.1 [Two-Dimensional Plotting], page 149.

Default value: 0.

beep_on_error
See Chapter 12 [Error Handling], page 119.

Default value: 0.

completion_append_char
See Section 2.4.4 [Commands For Completion], page 25.

Default value: " ".

default_eval_print_flag
See Chapter 9 [Evaluation], page 87.

Default value: 1.

default_return_value
See Section 11.2 [Multiple Return Values], page 104.

Default value: [].

Chapter 7: Variables 65

default_save_format
See Section 13.1.3 [Simple File I/O], page 128.
Default value: "ascii".

do_fortran_indexing
See Section 8.1 [Index Expressions], page 71.
Default value: 0.

crash_dumps_octave_core
See Section 13.1.3 [Simple File I/O], page 128.
Default value: 1.

define_all_return_values
See Section 11.2 [Multiple Return Values], page 104.
Default value: 0.

empty_list_elements_ok
See Section 4.1.1 [Empty Matrices], page 43.
Default value: "warn".

fixed_point_format
See Section 4.1 [Matrices], page 39
Default value: 0.

gnuplot_binary
See Section 14.3 [Three-Dimensional Plotting], page 157.
Default value: "gnuplot".

history_file
See Section 2.4.5 [Commands For History], page 26.
Default value: "~/.octave_hist".

history_size
See Section 2.4.5 [Commands For History], page 26.
Default value: 1024.

ignore_function_time_stamp
See Section 11.6 [Function Files], page 109.
Default value: "system".

implicit_num_to_str_ok
See Section 5.3 [String Conversions], page 50.
Default value: 0.

66 GNU Octave

implicit_str_to_num_ok
See Section 5.3 [String Conversions], page 50.
Default value: 0.

max_recursion_depth
See Section 8.2.2 [Recursion], page 76.
Default value: 256.

ok_to_lose_imaginary_part
See Section 15.3 [Special Utility Matrices], page 168.
Default value: "warn".

output_max_field_width
See Section 4.1 [Matrices], page 39.
Default value: 10.

output_precision
See Section 4.1 [Matrices], page 39.
Default value: 5.

page_screen_output
See Chapter 13 [Input and Output], page 123.
Default value: 1.

prefer_column_vectors
See Section 8.1 [Index Expressions], page 71.
Default value: 1.

print_answer_id_name
See Section 13.1.1 [Terminal Output], page 124.
Default value: 1.

print_empty_dimensions
See Section 4.1.1 [Empty Matrices], page 43.
Default value: 1.

resize_on_range_error
See Section 8.1 [Index Expressions], page 71.
Default value: 1.

return_last_computed_value
See Section 11.5 [Returning From a Function], page 108.
Default value: 0.

Chapter 7: Variables 67

save_precision
See Section 13.1.3 [Simple File I/O], page 128.
Default value: 17.

saving_history
See Section 2.4.5 [Commands For History], page 26.
Default value: 1.

silent_functions
See Section 11.1 [Defining Functions], page 101.
Default value: 0.

split_long_rows
See Section 4.1 [Matrices], page 39.
Default value: 1.

struct_levels_to_print
See Chapter 6 [Data Structures], page 55.
Default value: 2.

suppress_verbose_help_message
See Section 2.3 [Getting Help], page 22.
Default value: 1.

treat_neg_dim_as_zero
See Section 15.3 [Special Utility Matrices], page 168.
Default value: 0.

warn_assign_as_truth_value
See Section 10.1 [The if Statement], page 89.
Default value: 1.

warn_comma_in_global_decl
See Section 7.1 [Global Variables], page 59.
Default value: 1.

warn_divide_by_zero
See Section 8.3 [Arithmetic Ops], page 76.
Default value: 1.

warn_function_name_clash
See Section 11.6 [Function Files], page 109.
Default value: 1.

68 GNU Octave

warn_reload_forces_clear
See Section 11.8 [Dynamically Linked Functions], page 113.
Default value: 1.

warn_variable_switch_label
See Section 10.2 [The switch Statement], page 92.
Default value: 0.

whitespace_in_literal_matrix
See Section 4.1 [Matrices], page 39.
Default value: "".

7.4 Defaults from the Environment

Octave uses the values of the following environment variables to set
the default values for the corresponding built-in variables. In addition,
the values from the environment may be overridden by command-line
arguments. See Section 2.1.1 [Command Line Options], page 17.

EDITOR See Section 2.4.5 [Commands For History], page 26.
Built-in variable: EDITOR.

OCTAVE_EXEC_PATH
See Section 29.3 [Controlling Subprocesses], page 234.
Built-in variable: EXEC_PATH. Command-line argument: --
exec-path.

OCTAVE_PATH
See Section 11.6 [Function Files], page 109.
Built-in variable: LOADPATH. Command-line argument: --
path.

OCTAVE_INFO_FILE
See Section 2.3 [Getting Help], page 22.
Built-in variable: INFO_FILE. Command-line argument: --
info-file.

OCTAVE_INFO_PROGRAM
See Section 2.3 [Getting Help], page 22.
Built-in variable: INFO_PROGRAM. Command-line argument:
--info-program.

OCTAVE_HISTSIZE
See Section 2.4.5 [Commands For History], page 26.
Built-in variable: history_size.

Chapter 7: Variables 69

OCTAVE_HISTFILE
See Section 2.4.5 [Commands For History], page 26.
Built-in variable: history_file.

70 GNU Octave

Chapter 8: Expressions 71

8 Expressions

Expressions are the basic building block of statements in Octave. An
expression evaluates to a value, which you can print, test, store in a vari-
able, pass to a function, or assign a new value to a variable with an
assignment operator.

An expression can serve as a statement on its own. Most other kinds of
statements contain one or more expressions which specify data to be op-
erated on. As in other languages, expressions in Octave include variables,
array references, constants, and function calls, as well as combinations of
these with various operators.

8.1 Index Expressions

An index expression allows you to reference or extract selected ele-
ments of a matrix or vector.

Indices may be scalars, vectors, ranges, or the special operator ‘:’,
which may be used to select entire rows or columns.

Vectors are indexed using a single expression. Matrices require two
indices unless the value of the built-in variable do_fortran_indexing is
nonzero, in which case matrices may also be indexed by a single expression.

Built-in Variabledo fortran indexing
If the value of do_fortran_indexing is nonzero, Octave allows you
to select elements of a two-dimensional matrix using a single index by
treating the matrix as a single vector created from the columns of the
matrix. The default value is 0.

Given the matrix
a = [1, 2; 3, 4]

all of the following expressions are equivalent
a (1, [1, 2])
a (1, 1:2)
a (1, :)

and select the first row of the matrix.
A special form of indexing may be used to select elements of a matrix

or vector. If the indices are vectors made up of only ones and zeros, the
result is a new matrix whose elements correspond to the elements of the
index vector that are equal to one. For example,

a = [1, 2; 3, 4];
a ([1, 0], :)

72 GNU Octave

selects the first row of the matrix a.
This operation can be useful for selecting elements of a matrix based

on some condition, since the comparison operators return matrices of ones
and zeros.

This special zero-one form of indexing leads to a conflict with the stan-
dard indexing operation. For example, should the following statements

a = [1, 2; 3, 4];
a ([1, 1], :)

return the original matrix, or the matrix formed by selecting the first row
twice? Although this conflict is not likely to arise very often in practice,
you may select the behavior you prefer by setting the built-in variable
prefer_zero_one_indexing.

Built-in Variableprefer zero one indexing
If the value of prefer_zero_one_indexing is nonzero, Octave will
perform zero-one style indexing when there is a conflict with the normal
indexing rules. See Section 8.1 [Index Expressions], page 71. For
example, given a matrix

a = [1, 2, 3, 4]

with prefer_zero_one_indexing is set to nonzero, the expression
a ([1, 1, 1, 1])

results in the matrix [1, 2, 3, 4]. If the value of prefer_zero_
one_indexing set to 0, the result would be the matrix [1, 1, 1, 1
].
In the first case, Octave is selecting each element corresponding to a
‘1’ in the index vector. In the second, Octave is selecting the first
element multiple times.
The default value for prefer_zero_one_indexing is 0.

Finally, indexing a scalar with a vector of ones can be used to create
a vector the same size as the index vector, with each element equal to the
value of the original scalar. For example, the following statements

a = 13;
a ([1, 1, 1, 1])

produce a vector whose four elements are all equal to 13.
Similarly, indexing a scalar with two vectors of ones can be used to

create a matrix. For example the following statements
a = 13;
a ([1, 1], [1, 1, 1])

create a 2 by 3 matrix with all elements equal to 13.

Chapter 8: Expressions 73

This is an obscure notation and should be avoided. It is better to
use the function ones to generate a matrix of the appropriate size whose
elements are all one, and then to scale it to produce the desired result.
See Section 15.3 [Special Utility Matrices], page 168.

Built-in Variableprefer column vectors
If prefer_column_vectors is nonzero, operations like

for i = 1:10
a (i) = i;

endfor

(for a previously undefined) produce column vectors. Otherwise, row
vectors are preferred. The default value is 1.
If a variable is already defined to be a vector (a matrix with a single
row or column), the original orientation is respected, regardless of the
value of prefer_column_vectors.

Built-in Variableresize on range error
If the value of resize_on_range_error is nonzero, expressions like

for i = 1:10
a (i) = sqrt (i);

endfor

(for a previously undefined) result in the variable a being resized to be
just large enough to hold the new value. New elements that have not
been given a value are set to zero. If the value of resize_on_range_
error is 0, an error message is printed and control is returned to the
top level. The default value is 1.

Note that it is quite inefficient to create a vector using a loop like the
one shown in the example above. In this particular case, it would have
been much more efficient to use the expression

a = sqrt (1:10);

thus avoiding the loop entirely. In cases where a loop is still required,
or a number of values must be combined to form a larger matrix, it is
generally much faster to set the size of the matrix first, and then insert
elements using indexing commands. For example, given a matrix a,

[nr, nc] = size (a);
x = zeros (nr, n * nc);
for i = 1:n
x(:,(i-1)*n+1:i*n) = a;

endfor

is considerably faster than

74 GNU Octave

x = a;
for i = 1:n-1
x = [x, a];

endfor

particularly for large matrices because Octave does not have to repeatedly
resize the result.

8.2 Calling Functions

A function is a name for a particular calculation. Because it has a
name, you can ask for it by name at any point in the program. For
example, the function sqrt computes the square root of a number.

A fixed set of functions are built-in, which means they are available in
every Octave program. The sqrt function is one of these. In addition, you
can define your own functions. See Chapter 11 [Functions and Scripts],
page 101, for information about how to do this.

The way to use a function is with a function call expression, which con-
sists of the function name followed by a list of arguments in parentheses.
The arguments are expressions which give the raw materials for the calcu-
lation that the function will do. When there is more than one argument,
they are separated by commas. If there are no arguments, you can omit
the parentheses, but it is a good idea to include them anyway, to clearly
indicate that a function call was intended. Here are some examples:

sqrt (x^2 + y^2) # One argument
ones (n, m) # Two arguments
rand () # No arguments

Each function expects a particular number of arguments. For example,
the sqrt function must be called with a single argument, the number to
take the square root of:

sqrt (argument)

Some of the built-in functions take a variable number of arguments,
depending on the particular usage, and their behavior is different depend-
ing on the number of arguments supplied.

Like every other expression, the function call has a value, which is
computed by the function based on the arguments you give it. In this
example, the value of sqrt (argument) is the square root of the argument.
A function can also have side effects, such as assigning the values of certain
variables or doing input or output operations.

Unlike most languages, functions in Octave may return multiple values.
For example, the following statement

[u, s, v] = svd (a)

Chapter 8: Expressions 75

computes the singular value decomposition of the matrix a and assigns
the three result matrices to u, s, and v.

The left side of a multiple assignment expression is itself a list of
expressions, and is allowed to be a list of variable names or index expres-
sions. See also Section 8.1 [Index Expressions], page 71, and Section 8.6
[Assignment Ops], page 81.

8.2.1 Call by Value

In Octave, unlike Fortran, function arguments are passed by value,
which means that each argument in a function call is evaluated and as-
signed to a temporary location in memory before being passed to the
function. There is currently no way to specify that a function parameter
should be passed by reference instead of by value. This means that it is
impossible to directly alter the value of function parameter in the calling
function. It can only change the local copy within the function body. For
example, the function

function f (x, n)
while (n-- > 0)

disp (x);
endwhile

endfunction

displays the value of the first argument n times. In this function, the
variable n is used as a temporary variable without having to worry that
its value might also change in the calling function. Call by value is also
useful because it is always possible to pass constants for any function
parameter without first having to determine that the function will not
attempt to modify the parameter.

The caller may use a variable as the expression for the argument, but
the called function does not know this: it only knows what value the
argument had. For example, given a function called as

foo = "bar";
fcn (foo)

you should not think of the argument as being “the variable foo.” Instead,
think of the argument as the string value, "bar".

Even though Octave uses pass-by-value semantics for function argu-
ments, values are not copied unnecessarily. For example,

x = rand (1000);
f (x);

does not actually force two 1000 by 1000 element matrices to exist unless
the function f modifies the value of its argument. Then Octave must

76 GNU Octave

create a copy to avoid changing the value outside the scope of the function
f, or attempting (and probably failing!) to modify the value of a constant
or the value of a temporary result.

8.2.2 Recursion

With some restrictions1, recursive function calls are allowed. A re-
cursive function is one which calls itself, either directly or indirectly. For
example, here is an inefficient2 way to compute the factorial of a given
integer:

function retval = fact (n)
if (n > 0)

retval = n * fact (n-1);
else

retval = 1;
endif

endfunction

This function is recursive because it calls itself directly. It eventually
terminates because each time it calls itself, it uses an argument that is
one less than was used for the previous call. Once the argument is no
longer greater than zero, it does not call itself, and the recursion ends.

The built-in variable max_recursion_depth specifies a limit to the
recursion depth and prevents Octave from recursing infinitely.

max recursion depthLimit the number of times a function may be
called recursively.

If the limit is exceeded, an error message is printed and control returns
to the top level.
The default value is 256.

8.3 Arithmetic Operators

The following arithmetic operators are available, and work on scalars
and matrices.

1 Some of Octave’s function are implemented in terms of functions that cannot
be called recursively. For example, the ODE solver lsode is ultimately
implemented in a Fortran subroutine that cannot be called recursively, so
lsode should not be called either directly or indirectly from within the user-
supplied function that lsode requires. Doing so will result in undefined
behavior.

2 It would be much better to use prod (1:n), or gamma (n+1) instead, after
first checking to ensure that the value n is actually a positive integer.

Chapter 8: Expressions 77

x + y Addition. If both operands are matrices, the number of rows
and columns must both agree. If one operand is a scalar, its
value is added to all the elements of the other operand.

x .+ y Element by element addition. This operator is equivalent to
+.

x - y Subtraction. If both operands are matrices, the number of
rows and columns of both must agree.

x .- y Element by element subtraction. This operator is equivalent
to -.

x * y Matrix multiplication. The number of columns of x must
agree with the number of rows of y.

x .* y Element by element multiplication. If both operands are
matrices, the number of rows and columns must both agree.

x / y Right division. This is conceptually equivalent to the ex-
pression

(inverse (y’) * x’)’

but it is computed without forming the inverse of y’.
If the system is not square, or if the coefficient matrix is
singular, a minimum norm solution is computed.

x ./ y Element by element right division.

x \ y Left division. This is conceptually equivalent to the expres-
sion

inverse (x) * y

but it is computed without forming the inverse of x.
If the system is not square, or if the coefficient matrix is
singular, a minimum norm solution is computed.

x .\ y Element by element left division. Each element of y is di-
vided by each corresponding element of x.

x ^ y
x ** y Power operator. If x and y are both scalars, this operator

returns x raised to the power y. If x is a scalar and y is
a square matrix, the result is computed using an eigenvalue
expansion. If x is a square matrix. the result is computed by
repeated multiplication if y is an integer, and by an eigen-
value expansion if y is not an integer. An error results if
both x and y are matrices.
The implementation of this operator needs to be improved.

78 GNU Octave

x .^ y

x .** y Element by element power operator. If both operands are
matrices, the number of rows and columns must both agree.

-x Negation.

+x Unary plus. This operator has no effect on the operand.

x’ Complex conjugate transpose. For real arguments, this op-
erator is the same as the transpose operator. For complex
arguments, this operator is equivalent to the expression

conj (x.’)

x.’ Transpose.

Note that because Octave’s element by element operators begin with
a ‘.’, there is a possible ambiguity for statements like

1./m

because the period could be interpreted either as part of the constant or as
part of the operator. To resolve this conflict, Octave treats the expression
as if you had typed

(1) ./ m

and not
(1.) / m

Although this is inconsistent with the normal behavior of Octave’s lexer,
which usually prefers to break the input into tokens by preferring the
longest possible match at any given point, it is more useful in this case.

Built-in Variablewarn divide by zero
If the value of warn_divide_by_zero is nonzero, a warning is issued
when Octave encounters a division by zero. If the value is 0, the
warning is omitted. The default value is 1.

8.4 Comparison Operators

Comparison operators compare numeric values for relationships such
as equality. They are written using relational operators.

All of Octave’s comparison operators return a value of 1 if the com-
parison is true, or 0 if it is false. For matrix values, they all work on an
element-by-element basis. For example,

[1, 2; 3, 4] == [1, 3; 2, 4]
⇒ 1 0

0 1

Chapter 8: Expressions 79

If one operand is a scalar and the other is a matrix, the scalar is
compared to each element of the matrix in turn, and the result is the
same size as the matrix.

x < y True if x is less than y.

x <= y True if x is less than or equal to y.

x == y True if x is equal to y.

x >= y True if x is greater than or equal to y.

x > y True if x is greater than y.

x != y
x ~= y
x <> y True if x is not equal to y.

String comparisons may also be performed with the strcmp function,
not with the comparison operators listed above. See Chapter 5 [Strings],
page 47.

8.5 Boolean Expressions

8.5.1 Element-by-element Boolean Operators

An element-by-element boolean expression is a combination of com-
parison expressions using the boolean operators “or” (‘|’), “and” (‘&’),
and “not” (‘!’), along with parentheses to control nesting. The truth of
the boolean expression is computed by combining the truth values of the
corresponding elements of the component expressions. A value is consid-
ered to be false if it is zero, and true otherwise.

Element-by-element boolean expressions can be used wherever com-
parison expressions can be used. They can be used in if and while
statements. However, if a matrix value used as the condition in an if or
while statement is only true if all of its elements are nonzero.

Like comparison operations, each element of an element-by-element
boolean expression also has a numeric value (1 if true, 0 if false) that comes
into play if the result of the boolean expression is stored in a variable, or
used in arithmetic.

Here are descriptions of the three element-by-element boolean opera-
tors.

boolean1 & boolean2
Elements of the result are true if both corresponding ele-
ments of boolean1 and boolean2 are true.

80 GNU Octave

boolean1 | boolean2
Elements of the result are true if either of the corresponding
elements of boolean1 or boolean2 is true.

! boolean
~ boolean Each element of the result is true if the corresponding ele-

ment of boolean is false.

For matrix operands, these operators work on an element-by-element
basis. For example, the expression

[1, 0; 0, 1] & [1, 0; 2, 3]

returns a two by two identity matrix.
For the binary operators, the dimensions of the operands must conform

if both are matrices. If one of the operands is a scalar and the other a
matrix, the operator is applied to the scalar and each element of the
matrix.

For the binary element-by-element boolean operators, both subexpres-
sions boolean1 and boolean2 are evaluated before computing the result.
This can make a difference when the expressions have side effects. For
example, in the expression

a & b++

the value of the variable b is incremented even if the variable a is zero.
This behavior is necessary for the boolean operators to work as de-

scribed for matrix-valued operands.

8.5.2 Short-circuit Boolean Operators

Combined with the implicit conversion to scalar values in if and while
conditions, Octave’s element-by-element boolean operators are often suf-
ficient for performing most logical operations. However, it is sometimes
desirable to stop evaluating a boolean expression as soon as the overall
truth value can be determined. Octave’s short-circuit boolean operators
work this way.

boolean1 && boolean2
The expression boolean1 is evaluated and converted to
a scalar using the equivalent of the operation all (all
(boolean1)). If it is false, the result of the overall expres-
sion is 0. If it is true, the expression boolean2 is evaluated
and converted to a scalar using the equivalent of the oper-
ation all (all (boolean1)). If it is true, the result of the
overall expression is 1. Otherwise, the result of the overall
expression is 0.

Chapter 8: Expressions 81

boolean1 || boolean2
The expression boolean1 is evaluated and converted to
a scalar using the equivalent of the operation all (all
(boolean1)). If it is true, the result of the overall expres-
sion is 1. If it is false, the expression boolean2 is evaluated
and converted to a scalar using the equivalent of the oper-
ation all (all (boolean1)). If it is true, the result of the
overall expression is 1. Otherwise, the result of the overall
expression is 0.

The fact that both operands may not be evaluated before determining
the overall truth value of the expression can be important. For example,
in the expression

a && b++

the value of the variable b is only incremented if the variable a is nonzero.
This can be used to write somewhat more concise code. For example,

it is possible write
function f (a, b, c)
if (nargin > 2 && isstr (c))

...

instead of having to use two if statements to avoid attempting to evaluate
an argument that doesn’t exist. For example, without the short-circuit
feature, it would be necessary to write

function f (a, b, c)
if (nargin > 2)

if (isstr (c))
...

Writing
function f (a, b, c)
if (nargin > 2 & isstr (c))

...

would result in an error if f were called with one or two arguments because
Octave would be forced to try to evaluate both of the operands for the
operator ‘&’.

8.6 Assignment Expressions

An assignment is an expression that stores a new value into a variable.
For example, the following expression assigns the value 1 to the variable
z:

z = 1

82 GNU Octave

After this expression is executed, the variable z has the value 1. What-
ever old value z had before the assignment is forgotten. The ‘=’ sign is
called an assignment operator.

Assignments can store string values also. For example, the following
expression would store the value "this food is good" in the variable
message:

thing = "food"
predicate = "good"
message = ["this " , thing , " is " , predicate]

(This also illustrates concatenation of strings.)
Most operators (addition, concatenation, and so on) have no effect

except to compute a value. If you ignore the value, you might as well not
use the operator. An assignment operator is different. It does produce a
value, but even if you ignore the value, the assignment still makes itself
felt through the alteration of the variable. We call this a side effect.

The left-hand operand of an assignment need not be a variable (see
Chapter 7 [Variables], page 59). It can also be an element of a matrix
(see Section 8.1 [Index Expressions], page 71) or a list of return values
(see Section 8.2 [Calling Functions], page 74). These are all called lvalues,
which means they can appear on the left-hand side of an assignment op-
erator. The right-hand operand may be any expression. It produces the
new value which the assignment stores in the specified variable, matrix
element, or list of return values.

It is important to note that variables do not have permanent types.
The type of a variable is simply the type of whatever value it happens to
hold at the moment. In the following program fragment, the variable foo
has a numeric value at first, and a string value later on:

octave:13> foo = 1
foo = 1
octave:13> foo = "bar"
foo = bar

When the second assignment gives foo a string value, the fact that it
previously had a numeric value is forgotten.

Assignment of a scalar to an indexed matrix sets all of the elements
that are referenced by the indices to the scalar value. For example, if a is
a matrix with at least two columns,

a(:, 2) = 5

sets all the elements in the second column of a to 5.
Assigning an empty matrix ‘[]’ works in most cases to allow you to

delete rows or columns of matrices and vectors. See Section 4.1.1 [Empty
Matrices], page 43. For example, given a 4 by 5 matrix A, the assignment

Chapter 8: Expressions 83

A (3, :) = []

deletes the third row of A, and the assignment
A (:, 1:2:5) = []

deletes the first, third, and fifth columns.
An assignment is an expression, so it has a value. Thus, z = 1 as an

expression has the value 1. One consequence of this is that you can write
multiple assignments together:

x = y = z = 0

stores the value 0 in all three variables. It does this because the value of
z = 0, which is 0, is stored into y, and then the value of y = z = 0, which
is 0, is stored into x.

This is also true of assignments to lists of values, so the following is a
valid expression

[a, b, c] = [u, s, v] = svd (a)

that is exactly equivalent to
[u, s, v] = svd (a)
a = u
b = s
c = v

In expressions like this, the number of values in each part of the ex-
pression need not match. For example, the expression

[a, b, c, d] = [u, s, v] = svd (a)

is equivalent to the expression above, except that the value of the variable
‘d’ is left unchanged, and the expression

[a, b] = [u, s, v] = svd (a)

is equivalent to
[u, s, v] = svd (a)
a = u
b = s

You can use an assignment anywhere an expression is called for. For
example, it is valid to write x != (y = 1) to set y to 1 and then test
whether x equals 1. But this style tends to make programs hard to read.
Except in a one-shot program, you should rewrite it to get rid of such
nesting of assignments. This is never very hard.

8.7 Increment Operators

Increment operators increase or decrease the value of a variable by 1.
The operator to increment a variable is written as ‘++’. It may be used
to increment a variable either before or after taking its value.

84 GNU Octave

For example, to pre-increment the variable x, you would write ++x.
This would add one to x and then return the new value of x as the result
of the expression. It is exactly the same as the expression x = x + 1.

To post-increment a variable x, you would write x++. This adds one
to the variable x, but returns the value that x had prior to incrementing
it. For example, if x is equal to 2, the result of the expression x++ is 2,
and the new value of x is 3.

For matrix and vector arguments, the increment and decrement oper-
ators work on each element of the operand.

Here is a list of all the increment and decrement expressions.

++x This expression increments the variable x. The value of the
expression is the new value of x. It is equivalent to the
expression x = x + 1.

--x This expression decrements the variable x. The value of the
expression is the new value of x. It is equivalent to the
expression x = x - 1.

x++ This expression causes the variable x to be incremented. The
value of the expression is the old value of x.

x-- This expression causes the variable x to be decremented.
The value of the expression is the old value of x.

It is not currently possible to increment index expressions. For exam-
ple, you might expect that the expression v(4)++ would increment the
fourth element of the vector v, but instead it results in a parse error. This
problem may be fixed in a future release of Octave.

8.8 Operator Precedence

Operator precedence determines how operators are grouped, when dif-
ferent operators appear close by in one expression. For example, ‘*’ has
higher precedence than ‘+’. Thus, the expression a + b * c means to mul-
tiply b and c, and then add a to the product (i.e., a + (b * c)).

You can overrule the precedence of the operators by using parentheses.
You can think of the precedence rules as saying where the parentheses are
assumed if you do not write parentheses yourself. In fact, it is wise to
use parentheses whenever you have an unusual combination of operators,
because other people who read the program may not remember what the
precedence is in this case. You might forget as well, and then you too
could make a mistake. Explicit parentheses will help prevent any such
mistake.

Chapter 8: Expressions 85

When operators of equal precedence are used together, the leftmost
operator groups first, except for the assignment and exponentiation op-
erators, which group in the opposite order. Thus, the expression a - b +
c groups as (a - b) + c, but the expression a = b = c groups as a = (b =
c).

The precedence of prefix unary operators is important when another
operator follows the operand. For example, -x^2 means -(x^2), because
‘-’ has lower precedence than ‘^’.

Here is a table of the operators in Octave, in order of increasing prece-
dence.

statement separators
‘;’, ‘,’.

assignment
‘=’. This operator groups right to left.

logical "or" and "and"
‘||’, ‘&&’.

element-wise "or" and "and"
‘|’, ‘&’.

relational
‘<’, ‘<=’, ‘==’, ‘>=’, ‘>’, ‘!=’, ‘~=’, ‘<>’.

colon ‘:’.

add, subtract
‘+’, ‘-’.

multiply, divide
‘*’, ‘/’, ‘\’, ‘.\’, ‘.*’, ‘./’.

transpose ‘’’, ‘.’’

unary plus, minus, increment, decrement, and ‘‘not’’
‘+’, ‘-’, ‘++’, ‘--’, ‘!’, ‘~’.

exponentiation
‘^’, ‘**’, ‘.^’, ‘.**’.

86 GNU Octave

Chapter 9: Evaluation 87

9 Evaluation

Normally, you evaluate expressions simply by typing them at the Oc-
tave prompt, or by asking Octave to interpret commands that you have
saved in a file.

Sometimes, you may find it necessary to evaluate an expression that
has been computed and stored in a string, or use a string as the name
of a function to call. The eval and feval functions allow you to do just
that, and are necessary in order to evaluate commands that are not known
until run time, or to write functions that will need to call user-supplied
functions.

Built-in Functioneval (command)
Parse the string command and evaluate it as if it were an Octave pro-
gram, returning the last value computed. The command is evaluated
in the current context, so any results remain available after eval re-
turns. For example,

eval ("a = 13")
� a = 13
⇒ 13

In this case, the value of the evaluated expression is printed and it is
also returned returned from eval. Just as with any other expression,
you can turn printing off by ending the expression in a semicolon. For
example,

eval ("a = 13;")
⇒ 13

In this example, the variable a has been given the value 13, but the
value of the expression is not printed. You can also turn off auto-
matic printing for all expressions executed by eval using the variable
default_eval_print_flag.

Built-in Variabledefault eval print flag
If the value of this variable is nonzero, Octave prints the results of
commands executed by eval that do not end with semicolons. If it is
zero, automatic printing is suppressed. The default value is 1.

Built-in Functionfeval (name, ...)
Evaluate the function named name. Any arguments after the first are
passed on to the named function. For example,

feval ("acos", -1)
⇒ 3.1416

calls the function acos with the argument ‘-1’.

88 GNU Octave

The function feval is necessary in order to be able to write functions
that call user-supplied functions, because Octave does not have a way
to declare a pointer to a function (like C) or to declare a special kind of
variable that can be used to hold the name of a function (like EXTERNAL
in Fortran). Instead, you must refer to functions by name, and use
feval to call them.

Here is a simple-minded function using feval that finds the root of a
user-supplied function of one variable using Newton’s method.

function result = newtroot (fname, x)

usage: newtroot (fname, x)
#
fname : a string naming a function f(x).
x : initial guess

delta = tol = sqrt (eps);
maxit = 200;
fx = feval (fname, x);
for i = 1:maxit

if (abs (fx) < tol)
result = x;
return;

else
fx_new = feval (fname, x + delta);
deriv = (fx_new - fx) / delta;
x = x - fx / deriv;
fx = fx_new;

endif
endfor

result = x;

endfunction

Note that this is only meant to be an example of calling user-supplied
functions and should not be taken too seriously. In addition to using a
more robust algorithm, any serious code would check the number and
type of all the arguments, ensure that the supplied function really was
a function, etc. See See Section 4.3 [Predicates for Numeric Objects],
page 45, for example, for a list of predicates for numeric objects, and See
Section 7.2 [Status of Variables], page 61, for a description of the exist
function.

Chapter 10: Statements 89

10 Statements

Statements may be a simple constant expression or a complicated list
of nested loops and conditional statements.

Control statements such as if, while, and so on control the flow of ex-
ecution in Octave programs. All the control statements start with special
keywords such as if and while, to distinguish them from simple expres-
sions. Many control statements contain other statements; for example,
the if statement contains another statement which may or may not be
executed.

Each control statement has a corresponding end statement that marks
the end of the end of the control statement. For example, the keyword
endif marks the end of an if statement, and endwhile marks the end
of a while statement. You can use the keyword end anywhere a more
specific end keyword is expected, but using the more specific keywords
is preferred because if you use them, Octave is able to provide better
diagnostics for mismatched or missing end tokens.

The list of statements contained between keywords like if or while
and the corresponding end statement is called the body of a control state-
ment.

10.1 The if Statement

The if statement is Octave’s decision-making statement. There are
three basic forms of an if statement. In its simplest form, it looks like
this:

if (condition)
then-body

endif

condition is an expression that controls what the rest of the statement
will do. The then-body is executed only if condition is true.

The condition in an if statement is considered true if its value is non-
zero, and false if its value is zero. If the value of the conditional expression
in an if statement is a vector or a matrix, it is considered true only if all
of the elements are non-zero.

The second form of an if statement looks like this:
if (condition)

then-body

else
else-body

endif

90 GNU Octave

If condition is true, then-body is executed; otherwise, else-body is exe-
cuted.

Here is an example:
if (rem (x, 2) == 0)
printf ("x is even\n");

else
printf ("x is odd\n");

endif

In this example, if the expression rem (x, 2) == 0 is true (that is, the
value of x is divisible by 2), then the first printf statement is evaluated,
otherwise the second printf statement is evaluated.

The third and most general form of the if statement allows multiple
decisions to be combined in a single statement. It looks like this:

if (condition)
then-body

elseif (condition)
elseif-body

else
else-body

endif

Any number of elseif clauses may appear. Each condition is tested in
turn, and if one is found to be true, its corresponding body is executed.
If none of the conditions are true and the else clause is present, its body
is executed. Only one else clause may appear, and it must be the last
part of the statement.

In the following example, if the first condition is true (that is, the
value of x is divisible by 2), then the first printf statement is executed.
If it is false, then the second condition is tested, and if it is true (that
is, the value of x is divisible by 3), then the second printf statement is
executed. Otherwise, the third printf statement is performed.

if (rem (x, 2) == 0)
printf ("x is even\n");

elseif (rem (x, 3) == 0)
printf ("x is odd and divisible by 3\n");

else
printf ("x is odd\n");

endif

Note that the elseif keyword must not be spelled else if, as is
allowed in Fortran. If it is, the space between the else and if will tell
Octave to treat this as a new if statement within another if statement’s
else clause. For example, if you write

Chapter 10: Statements 91

if (c1)
body-1

else if (c2)
body-2

endif

Octave will expect additional input to complete the first if statement. If
you are using Octave interactively, it will continue to prompt you for ad-
ditional input. If Octave is reading this input from a file, it may complain
about missing or mismatched end statements, or, if you have not used
the more specific end statements (endif, endfor, etc.), it may simply
produce incorrect results, without producing any warning messages.

It is much easier to see the error if we rewrite the statements above
like this,

if (c1)
body-1

else
if (c2)

body-2

endif

using the indentation to show how Octave groups the statements. See
Chapter 11 [Functions and Scripts], page 101.

Built-in Variablewarn assign as truth value
If the value of warn_assign_as_truth_value is nonzero, a warning is
issued for statements like

if (s = t)
...

since such statements are not common, and it is likely that the intent
was to write

if (s == t)
...

instead.
There are times when it is useful to write code that contains assign-
ments within the condition of a while or if statement. For example,
statements like

while (c = getc())
...

are common in C programming.
It is possible to avoid all warnings about such statements by setting
warn_assign_as_truth_value to 0, but that may also let real errors
like

92 GNU Octave

if (x = 1) # intended to test (x == 1)!
...

slip by.
In such cases, it is possible suppress errors for specific statements by
writing them with an extra set of parentheses. For example, writing
the previous example as

while ((c = getc()))
...

will prevent the warning from being printed for this statement, while
allowing Octave to warn about other assignments used in conditional
contexts.
The default value of warn_assign_as_truth_value is 1.

10.2 The switch Statement

The switch statement was introduced in Octave 2.0.5. It
should be considered experimental, and details of the implemen-
tation may change slightly in future versions of Octave. If you
have comments or would like to share your experiences in trying
to use this new command in real programs, please send them to
octave-maintainers@bevo.che.wisc.edu. (But if you think you’ve
found a bug, please report it to bug-octave@bevo.che.wisc.edu.

The general form of the switch statement is
switch expression

case label
command list

case label

command list
...

otherwise
command list

endswitch

• The identifiers switch, case, otherwise, and endswitch are now
keywords.

• The label may be any expression.

• Duplicate label values are not detected. The command list corre-
sponding to the first match will be executed.

• You must have at least one case label command list clause.

• The otherwise command list clause is optional.

Chapter 10: Statements 93

• As with all other specific end keywords, endswitch may be replaced
by end, but you can get better diagnostics if you use the specific
forms.

• Cases are exclusive, so they don’t ‘fall through’ as do the cases in
the switch statement of the C language.

• The command list elements are not optional. Making the list op-
tional would have meant requiring a separator between the label and
the command list. Otherwise, things like

switch (foo)
case (1) -2
...

would produce surprising results, as would

switch (foo)
case (1)
case (2)

doit ();
...

particularly for C programmers.

• The implementation is simple-minded and currently offers no real
performance improvement over an equivalent if block, even if all
the labels are integer constants. Perhaps a future variation on this
could detect all constant integer labels and improve performance by
using a jump table.

Built-in Variablewarn variable switch label
If the value of this variable is nonzero, Octave will print a warning if
a switch label is not a constant or constant expression

10.3 The while Statement

In programming, a loop means a part of a program that is (or at least
can be) executed two or more times in succession.

The while statement is the simplest looping statement in Octave. It
repeatedly executes a statement as long as a condition is true. As with
the condition in an if statement, the condition in a while statement is
considered true if its value is non-zero, and false if its value is zero. If the
value of the conditional expression in a while statement is a vector or a
matrix, it is considered true only if all of the elements are non-zero.

Octave’s while statement looks like this:
while (condition)

94 GNU Octave

body
endwhile

Here body is a statement or list of statements that we call the body of
the loop, and condition is an expression that controls how long the loop
keeps running.

The first thing the while statement does is test condition. If condition
is true, it executes the statement body. After body has been executed,
condition is tested again, and if it is still true, body is executed again.
This process repeats until condition is no longer true. If condition is
initially false, the body of the loop is never executed.

This example creates a variable fib that contains the first ten elements
of the Fibonacci sequence.

fib = ones (1, 10);
i = 3;
while (i <= 10)
fib (i) = fib (i-1) + fib (i-2);
i++;

endwhile

Here the body of the loop contains two statements.
The loop works like this: first, the value of i is set to 3. Then, the

while tests whether i is less than or equal to 10. This is the case when i
equals 3, so the value of the i-th element of fib is set to the sum of the
previous two values in the sequence. Then the i++ increments the value
of i and the loop repeats. The loop terminates when i reaches 11.

A newline is not required between the condition and the body; but
using one makes the program clearer unless the body is very simple.

See Section 10.1 [The if Statement], page 89 for a description of the
variable warn_assign_as_truth_value.

10.4 The for Statement

The for statement makes it more convenient to count iterations of a
loop. The general form of the for statement looks like this:

for var = expression
body

endfor

where body stands for any statement or list of statements, expression is
any valid expression, and var may take several forms. Usually it is a
simple variable name or an indexed variable. If the value of expression
is a structure, var may also be a list. See Section 10.4.1 [Looping Over
Structure Elements], page 95, below.

Chapter 10: Statements 95

The assignment expression in the for statement works a bit differently
than Octave’s normal assignment statement. Instead of assigning the
complete result of the expression, it assigns each column of the expression
to var in turn. If expression is a range, a row vector, or a scalar, the value
of var will be a scalar each time the loop body is executed. If var is a
column vector or a matrix, var will be a column vector each time the loop
body is executed.

The following example shows another way to create a vector containing
the first ten elements of the Fibonacci sequence, this time using the for
statement:

fib = ones (1, 10);
for i = 3:10
fib (i) = fib (i-1) + fib (i-2);

endfor

This code works by first evaluating the expression 3:10, to produce a
range of values from 3 to 10 inclusive. Then the variable i is assigned
the first element of the range and the body of the loop is executed once.
When the end of the loop body is reached, the next value in the range
is assigned to the variable i, and the loop body is executed again. This
process continues until there are no more elements to assign.

Although it is possible to rewrite all for loops as while loops, the
Octave language has both statements because often a for loop is both
less work to type and more natural to think of. Counting the number of
iterations is very common in loops and it can be easier to think of this
counting as part of looping rather than as something to do inside the loop.

10.4.1 Looping Over Structure Elements

A special form of the for statement allows you to loop over all the
elements of a structure:

for [val, key] = expression

body

endfor

In this form of the for statement, the value of expression must be a
structure. If it is, key and val are set to the name of the element and
the corresponding value in turn, until there are no more elements. For
example,

x.a = 1
x.b = [1, 2; 3, 4]
x.c = "string"
for [val, key] = x
key

96 GNU Octave

val
endfor

� key = a
� val = 1
� key = b
� val =
�
� 1 2
� 3 4
�
� key = c
� val = string

The elements are not accessed in any particular order. If you need to
cycle through the list in a particular way, you will have to use the function
struct_elements and sort the list yourself.

The key variable may also be omitted. If it is, the brackets are also
optional. This is useful for cycling through the values of all the structure
elements when the names of the elements do not need to be known.

10.5 The break Statement

The break statement jumps out of the innermost for or while loop
that encloses it. The break statement may only be used within the body
of a loop. The following example finds the smallest divisor of a given
integer, and also identifies prime numbers:

num = 103;
div = 2;
while (div*div <= num)
if (rem (num, div) == 0)

break;
endif
div++;

endwhile
if (rem (num, div) == 0)
printf ("Smallest divisor of %d is %d\n", num, div)

else
printf ("%d is prime\n", num);

endif

When the remainder is zero in the first while statement, Octave im-
mediately breaks out of the loop. This means that Octave proceeds im-

Chapter 10: Statements 97

mediately to the statement following the loop and continues processing.
(This is very different from the exit statement which stops the entire
Octave program.)

Here is another program equivalent to the previous one. It illustrates
how the condition of a while statement could just as well be replaced
with a break inside an if:

num = 103;
div = 2;
while (1)
if (rem (num, div) == 0)

printf ("Smallest divisor of %d is %d\n", num, div);
break;

endif
div++;
if (div*div > num)

printf ("%d is prime\n", num);
break;

endif
endwhile

10.6 The continue Statement

The continue statement, like break, is used only inside for or while
loops. It skips over the rest of the loop body, causing the next cycle
around the loop to begin immediately. Contrast this with break, which
jumps out of the loop altogether. Here is an example:

print elements of a vector of random
integers that are even.

first, create a row vector of 10 random
integers with values between 0 and 100:

vec = round (rand (1, 10) * 100);

print what we’re interested in:

for x = vec
if (rem (x, 2) != 0)

continue;
endif
printf ("%d\n", x);

98 GNU Octave

endfor

If one of the elements of vec is an odd number, this example skips the
print statement for that element, and continues back to the first statement
in the loop.

This is not a practical example of the continue statement, but it
should give you a clear understanding of how it works. Normally, one
would probably write the loop like this:

for x = vec
if (rem (x, 2) == 0)

printf ("%d\n", x);
endif

endfor

10.7 The unwind_protect Statement

Octave supports a limited form of exception handling modelled after
the unwind-protect form of Lisp.

The general form of an unwind_protect block looks like this:
unwind_protect

body

unwind_protect_cleanup
cleanup

end_unwind_protect

Where body and cleanup are both optional and may contain any Octave
expressions or commands. The statements in cleanup are guaranteed to
be executed regardless of how control exits body.

This is useful to protect temporary changes to global variables from
possible errors. For example, the following code will always restore the
original value of the built-in variable do_fortran_indexing even if an
error occurs while performing the indexing operation.

save_do_fortran_indexing = do_fortran_indexing;
unwind_protect
do_fortran_indexing = 1;
elt = a (idx)

unwind_protect_cleanup
do_fortran_indexing = save_do_fortran_indexing;

end_unwind_protect

Without unwind_protect, the value of do fortran indexing would not
be restored if an error occurs while performing the indexing operation
because evaluation would stop at the point of the error and the statement
to restore the value would not be executed.

Chapter 10: Statements 99

10.8 The try Statement

In addition to unwind protect, Octave supports another limited form
of exception handling.

The general form of a try block looks like this:
try

body
catch

cleanup

end_try_catch

Where body and cleanup are both optional and may contain any Oc-
tave expressions or commands. The statements in cleanup are only exe-
cuted if an error occurs in body.

No warnings or error messages are printed while body is executing. If
an error does occur during the execution of body, cleanup can access the
text of the message that would have been printed in the builtin constant
__error_text__. This is the same as eval (try, catch) (which may now
also use __error_text__) but it is more efficient since the commands do
not need to be parsed each time the try and catch statements are eval-
uated. See Chapter 12 [Error Handling], page 119, for more information
about the __error_text__ variable.

Octave’s try block is a very limited variation on the Lisp condition-
case form (limited because it cannot handle different classes of errors
separately). Perhaps at some point Octave can have some sort of clas-
sification of errors and try-catch can be improved to be as powerful as
condition-case in Lisp.

10.9 Continuation Lines

In the Octave language, most statements end with a newline character
and you must tell Octave to ignore the newline character in order to
continue a statement from one line to the next. Lines that end with the
characters ... or \ are joined with the following line before they are
divided into tokens by Octave’s parser. For example, the lines

x = long_variable_name ...
+ longer_variable_name \
- 42

form a single statement. The backslash character on the second line above
is interpreted a continuation character, not as a division operator.

For continuation lines that do not occur inside string constants, white-
space and comments may appear between the continuation marker and
the newline character. For example, the statement

100 GNU Octave

x = long_variable_name ... # comment one
+ longer_variable_name \ # comment two
- 42 # last comment

is equivalent to the one shown above. Inside string constants, the contin-
uation marker must appear at the end of the line just before the newline
character.

Input that occurs inside parentheses can be continued to the next line
without having to use a continuation marker. For example, it is possible
to write statements like

if (fine_dining_destination == on_a_boat
|| fine_dining_destination == on_a_train)

suess (i, will, not, eat, them, sam, i, am, i,
will, not, eat, green, eggs, and, ham);

endif

without having to add to the clutter with continuation markers.

Chapter 11: Functions and Script Files 101

11 Functions and Script Files

Complicated Octave programs can often be simplified by defining func-
tions. Functions can be defined directly on the command line during in-
teractive Octave sessions, or in external files, and can be called just like
built-in functions.

11.1 Defining Functions

In its simplest form, the definition of a function named name looks
like this:

function name
body

endfunction

A valid function name is like a valid variable name: a sequence of letters,
digits and underscores, not starting with a digit. Functions share the
same pool of names as variables.

The function body consists of Octave statements. It is the most im-
portant part of the definition, because it says what the function should
actually do.

For example, here is a function that, when executed, will ring the bell
on your terminal (assuming that it is possible to do so):

function wakeup
printf ("\a");

endfunction

The printf statement (see Chapter 13 [Input and Output], page 123)
simply tells Octave to print the string "\a". The special character ‘\a’
stands for the alert character (ASCII 7). See Chapter 5 [Strings], page 47.

Once this function is defined, you can ask Octave to evaluate it by
typing the name of the function.

Normally, you will want to pass some information to the functions you
define. The syntax for passing parameters to a function in Octave is

function name (arg-list)
body

endfunction

where arg-list is a comma-separated list of the function’s arguments.
When the function is called, the argument names are used to hold the
argument values given in the call. The list of arguments may be empty,
in which case this form is equivalent to the one shown above.

To print a message along with ringing the bell, you might modify the
beep to look like this:

102 GNU Octave

function wakeup (message)
printf ("\a%s\n", message);

endfunction

Calling this function using a statement like this

wakeup ("Rise and shine!");

will cause Octave to ring your terminal’s bell and print the message ‘Rise
and shine!’, followed by a newline character (the ‘\n’ in the first argu-
ment to the printf statement).

In most cases, you will also want to get some information back from
the functions you define. Here is the syntax for writing a function that
returns a single value:

function ret-var = name (arg-list)
body

endfunction

The symbol ret-var is the name of the variable that will hold the value
to be returned by the function. This variable must be defined before the
end of the function body in order for the function to return a value.

Variables used in the body of a function are local to the function.
Variables named in arg-list and ret-var are also local to the function.
See Section 7.1 [Global Variables], page 59, for information about how to
access global variables inside a function.

For example, here is a function that computes the average of the ele-
ments of a vector:

function retval = avg (v)
retval = sum (v) / length (v);

endfunction

If we had written avg like this instead,

function retval = avg (v)
if (is_vector (v))

retval = sum (v) / length (v);
endif

endfunction

and then called the function with a matrix instead of a vector as the
argument, Octave would have printed an error message like this:

error: ‘retval’ undefined near line 1 column 10
error: evaluating index expression near line 7, column 1

because the body of the if statement was never executed, and retval
was never defined. To prevent obscure errors like this, it is a good idea to
always make sure that the return variables will always have values, and to

Chapter 11: Functions and Script Files 103

produce meaningful error messages when problems are encountered. For
example, avg could have been written like this:

function retval = avg (v)
retval = 0;
if (is_vector (v))

retval = sum (v) / length (v);
else

error ("avg: expecting vector argument");
endif

endfunction

There is still one additional problem with this function. What if it is
called without an argument? Without additional error checking, Octave
will probably print an error message that won’t really help you track
down the source of the error. To allow you to catch errors like this,
Octave provides each function with an automatic variable called nargin.
Each time a function is called, nargin is automatically initialized to the
number of arguments that have actually been passed to the function. For
example, we might rewrite the avg function like this:

function retval = avg (v)
retval = 0;
if (nargin != 1)

usage ("avg (vector)");
endif
if (is_vector (v))

retval = sum (v) / length (v);
else

error ("avg: expecting vector argument");
endif

endfunction

Although Octave does not automatically report an error if you call a
function with more arguments than expected, doing so probably indicates
that something is wrong. Octave also does not automatically report an
error if a function is called with too few arguments, but any attempt to
use a variable that has not been given a value will result in an error. To
avoid such problems and to provide useful messages, we check for both
possibilities and issue our own error message.

Automatic Variablenargin
When a function is called, this local variable is automatically initialized
to the number of arguments passed to the function. At the top level,
nargin holds the number of command line arguments that were passed
to Octave.

104 GNU Octave

Built-in Variablesilent functions
If the value of silent_functions is nonzero, internal output from a
function is suppressed. Otherwise, the results of expressions within a
function body that are not terminated with a semicolon will have their
values printed. The default value is 0.
For example, if the function

function f ()
2 + 2

endfunction

is executed, Octave will either print ‘ans = 4’ or nothing depending on
the value of silent_functions.

Built-in Variablewarn missing semicolon
If the value of this variable is nonzero, Octave will warn when state-
ments in function definitions don’t end in semicolons. The default
value is 0.

11.2 Multiple Return Values

Unlike many other computer languages, Octave allows you to define
functions that return more than one value. The syntax for defining func-
tions that return multiple values is

function [ret-list] = name (arg-list)
body

endfunction

where name, arg-list, and body have the same meaning as before, and ret-
list is a comma-separated list of variable names that will hold the values
returned from the function. The list of return values must have at least
one element. If ret-list has only one element, this form of the function
statement is equivalent to the form described in the previous section.

Here is an example of a function that returns two values, the maximum
element of a vector and the index of its first occurrence in the vector.

function [max, idx] = vmax (v)
idx = 1;
max = v (idx);
for i = 2:length (v)

if (v (i) > max)
max = v (i);
idx = i;

endif
endfor

Chapter 11: Functions and Script Files 105

endfunction

In this particular case, the two values could have been returned as
elements of a single array, but that is not always possible or convenient.
The values to be returned may not have compatible dimensions, and it is
often desirable to give the individual return values distinct names.

In addition to setting nargin each time a function is called, Octave
also automatically initializes nargout to the number of values that are
expected to be returned. This allows you to write functions that behave
differently depending on the number of values that the user of the function
has requested. The implicit assignment to the built-in variable ans does
not figure in the count of output arguments, so the value of nargout may
be zero.

The svd and lu functions are examples of built-in functions that be-
have differently depending on the value of nargout.

It is possible to write functions that only set some return values. For
example, calling the function

function [x, y, z] = f ()
x = 1;
z = 2;

endfunction

as
[a, b, c] = f ()

produces:
a = 1

b = [](0x0)

c = 2

provided that the built-in variable define_all_return_values is nonzero
and the value of default_return_value is ‘[]’. See Section 7.3 [Sum-
mary of Built-in Variables], page 63.

Automatic Variablenargout
When a function is called, this local variable is automatically initialized
to the number of arguments expected to be returned. For example,

f ()

will result in nargout being set to 0 inside the function f and
[s, t] = f ()

will result in nargout being set to 2 inside the function f.
At the top level, nargout is undefined.

106 GNU Octave

Built-in Variabledefault return value
The value given to otherwise uninitialized return values if define_
all_return_values is nonzero. The default value is [].

Built-in Variabledefine all return values
If the value of define_all_return_values is nonzero, Octave will
substitute the value specified by default_return_value for any re-
turn values that remain undefined when a function returns. The de-
fault value is 0.

Function Filenargchk (nargin min, nargin max, n)
If n is in the range nargin min through nargin max inclusive, return
the empty matrix. Otherwise, return a message indicating whether n
is too large or too small.
This is useful for checking to see that the number of arguments supplied
to a function is within an acceptable range.

11.3 Variable-length Argument Lists

Octave has a real mechanism for handling functions that take an un-
specified number of arguments, so it is not necessary to place an upper
bound on the number of optional arguments that a function can accept.

Here is an example of a function that uses the new syntax to print a
header followed by an unspecified number of values:

function foo (heading, ...)
disp (heading);
va_start ();
Pre-decrement to skip ‘heading’ arg.
while (--nargin)

disp (va_arg ());
endwhile

endfunction

The ellipsis that marks the variable argument list may only appear
once and must be the last element in the list of arguments.

Built-in Functionva start ()
Position an internal pointer to the first unnamed argument and allows
you to cycle through the arguments more than once. It is not necessary
to call va_start if you do not plan to cycle through the arguments
more than once. This function may only be called inside functions that
have been declared to accept a variable number of input arguments.

Chapter 11: Functions and Script Files 107

Built-in Functionva arg ()
Return the value of the next available argument and move the internal
pointer to the next argument. It is an error to call va_arg() when
there are no more arguments available.

Sometimes it is useful to be able to pass all unnamed arguments to
another function. The keyword all va args makes this very easy to do.
For example,

function f (...)
while (nargin--)

disp (va_arg ())
endwhile

endfunction

function g (...)
f ("begin", all_va_args, "end")

endfunction

g (1, 2, 3)

� begin
� 1
� 2
� 3
� end

Keywordall va args
This keyword stands for the entire list of optional argument, so it is
possible to use it more than once within the same function without
having to call va_start. It can only be used within functions that
take a variable number of arguments. It is an error to use it in other
contexts.

11.4 Variable-length Return Lists

Octave also has a real mechanism for handling functions that return
an unspecified number of values, so it is no longer necessary to place an
upper bound on the number of outputs that a function can produce.

Here is an example of a function that uses a variable-length return list
to produce n values:

function [...] = f (n, x)
for i = 1:n

108 GNU Octave

vr_val (i * x);
endfor

endfunction

[dos, quatro] = f (2, 2)
⇒ dos = 2
⇒ quatro = 4

As with variable argument lists, the ellipsis that marks the variable
return list may only appear once and must be the last element in the list
of returned values.

Built-in Functionvr val (val)
Each time this function is called, it places the value of its argument at
the end of the list of values to return from the current function. Once
vr_val has been called, there is no way to go back to the beginning
of the list and rewrite any of the return values. This function may
only be called within functions that have been declared to return an
unspecified number of output arguments (by using the special ellipsis
notation described above).

11.5 Returning From a Function

The body of a user-defined function can contain a return statement.
This statement returns control to the rest of the Octave program. It looks
like this:

return

Unlike the return statement in C, Octave’s return statement cannot
be used to return a value from a function. Instead, you must assign values
to the list of return variables that are part of the function statement.
The return statement simply makes it easier to exit a function from a
deeply nested loop or conditional statement.

Here is an example of a function that checks to see if any elements of
a vector are nonzero.

function retval = any_nonzero (v)
retval = 0;
for i = 1:length (v)

if (v (i) != 0)
retval = 1;
return;

endif
endfor

Chapter 11: Functions and Script Files 109

printf ("no nonzero elements found\n");
endfunction

Note that this function could not have been written using the break
statement to exit the loop once a nonzero value is found without adding
extra logic to avoid printing the message if the vector does contain a
nonzero element.

Keywordreturn
When Octave encounters the keyword return inside a function or
script, it returns control to be caller immediately. At the top level,
the return statement is ignored. A return statement is assumed at
the end of every function definition.

Built-in Variablereturn last computed value
If the value of return_last_computed_value is true, and a function is
defined without explicitly specifying a return value, the function will
return the value of the last expression. Otherwise, no value will be
returned. The default value is 0.
For example, the function

function f ()
2 + 2;

endfunction

will either return nothing, if the value of return_last_computed_
value is 0, or 4, if the value of return_last_computed_value is
nonzero.

11.6 Function Files

Except for simple one-shot programs, it is not practical to have to
define all the functions you need each time you need them. Instead, you
will normally want to save them in a file so that you can easily edit them,
and save them for use at a later time.

Octave does not require you to load function definitions from files
before using them. You simply need to put the function definitions in a
place where Octave can find them.

When Octave encounters an identifier that is undefined, it first looks
for variables or functions that are already compiled and currently listed
in its symbol table. If it fails to find a definition there, it searches the list
of directories specified by the built-in variable LOADPATH for files ending
in ‘.m’ that have the same base name as the undefined identifier.1 Once

1 The ‘.m’ suffix was chosen for compatibility with Matlab.

110 GNU Octave

Octave finds a file with a name that matches, the contents of the file are
read. If it defines a single function, it is compiled and executed. See
Section 11.7 [Script Files], page 111, for more information about how you
can define more than one function in a single file.

When Octave defines a function from a function file, it saves the full
name of the file it read and the time stamp on the file. After that, it
checks the time stamp on the file every time it needs the function. If the
time stamp indicates that the file has changed since the last time it was
read, Octave reads it again.

Checking the time stamp allows you to edit the definition of a function
while Octave is running, and automatically use the new function definition
without having to restart your Octave session. Checking the time stamp
every time a function is used is rather inefficient, but it has to be done to
ensure that the correct function definition is used.

To avoid degrading performance unnecessarily by checking
the time stamps on functions that are not likely to change,
Octave assumes that function files in the directory tree ‘octave-
home/share/octave/version/m’ will not change, so it doesn’t have to
check their time stamps every time the functions defined in those files are
used. This is normally a very good assumption and provides a significant
improvement in performance for the function files that are distributed
with Octave.

If you know that your own function files will not change while you
are running Octave, you can improve performance by setting the variable
ignore_function_time_stamp to "all", so that Octave will ignore the
time stamps for all function files. Setting it to "system" gives the default
behavior. If you set it to anything else, Octave will check the time stamps
on all function files.

Built-in VariableDEFAULT LOADPATH
A colon separated list of directories in which to search for function
files by default. The value of this variable is also automatically substi-
tuted for leading, trailing, or doubled colons that appear in the built-in
variable LOADPATH.

Built-in VariableLOADPATH
A colon separated list of directories in which to search for function
files. See Chapter 11 [Functions and Scripts], page 101. The value
of LOADPATH overrides the environment variable OCTAVE_PATH. See
Appendix C [Installation], page 259.
LOADPATH is now handled in the same way as TEX handles TEXINPUTS.
Leading, trailing, or doubled colons that appear in LOADPATH are

Chapter 11: Functions and Script Files 111

replaced by the value of DEFAULT_LOADPATH. The default value of
LOADPATH is ":", which tells Octave to search in the directories speci-
fied by DEFAULT_LOADPATH.
In addition, if any path element ends in ‘//’, that directory and all
subdirectories it contains are searched recursively for function files.
This can result in a slight delay as Octave caches the lists of files
found in the LOADPATH the first time Octave searches for a function.
After that, searching is usually much faster because Octave normally
only needs to search its internal cache for files.
To improve performance of recursive directory searching, it is best
for each directory that is to be searched recursively to contain either
additional subdirectories or function files, but not a mixture of both.
See Section 11.9 [Organization of Functions], page 117 for a description
of the function file directories that are distributed with Octave.

Built-in Variableignore function time stamp
This variable can be used to prevent Octave from making the sys-
tem call stat each time it looks up functions defined in function
files. If ignore_function_time_stamp to "system", Octave will not
automatically recompile function files in subdirectories of ‘octave-
home/lib/version’ if they have changed since they were last com-
piled, but will recompile other function files in the LOADPATH if they
change. If set to "all", Octave will not recompile any function files
unless their definitions are removed with clear. For any other value
of ignore_function_time_stamp, Octave will always check to see if
functions defined in function files need to recompiled. The default
value of ignore_function_time_stamp is "system".

Built-in Variablewarn function name clash
If the value of warn_function_name_clash is nonzero, a warning is
issued when Octave finds that the name of a function defined in a
function file differs from the name of the file. (If the names disagree,
the name declared inside the file is ignored.) If the value is 0, the
warning is omitted. The default value is 1.

11.7 Script Files

A script file is a file containing (almost) any sequence of Octave com-
mands. It is read and evaluated just as if you had typed each command at
the Octave prompt, and provides a convenient way to perform a sequence
of commands that do not logically belong inside a function.

Unlike a function file, a script file must not begin with the keyword
function. If it does, Octave will assume that it is a function file, and

112 GNU Octave

that it defines a single function that should be evaluated as soon as it is
defined.

A script file also differs from a function file in that the variables named
in a script file are not local variables, but are in the same scope as the
other variables that are visible on the command line.

Even though a script file may not begin with the function keyword,
it is possible to define more than one function in a single script file and
load (but not execute) all of them at once. To do this, the first token in
the file (ignoring comments and other white space) must be something
other than function. If you have no other statements to evaluate, you
can use a statement that has no effect, like this:

Prevent Octave from thinking that this
is a function file:

1;

Define function one:

function one ()
...

To have Octave read and compile these functions into an internal form,
you need to make sure that the file is in Octave’s LOADPATH, then simply
type the base name of the file that contains the commands. (Octave uses
the same rules to search for script files as it does to search for function
files.)

If the first token in a file (ignoring comments) is function, Octave
will compile the function and try to execute it, printing a message warn-
ing about any non-whitespace characters that appear after the function
definition.

Note that Octave does not try to look up the definition of any identifier
until it needs to evaluate it. This means that Octave will compile the
following statements if they appear in a script file, or are typed at the
command line,

not a function file:
1;
function foo ()
do_something ();

endfunction
function do_something ()
do_something_else ();

endfunction

Chapter 11: Functions and Script Files 113

even though the function do_something is not defined before it is refer-
enced in the function foo. This is not an error because Octave does not
need to resolve all symbols that are referenced by a function until the
function is actually evaluated.

Since Octave doesn’t look for definitions until they are needed, the
following code will always print ‘bar = 3’ whether it is typed directly on
the command line, read from a script file, or is part of a function body,
even if there is a function or script file called ‘bar.m’ in Octave’s LOADPATH.

eval ("bar = 3");
bar

Code like this appearing within a function body could fool Octave if
definitions were resolved as the function was being compiled. It would be
virtually impossible to make Octave clever enough to evaluate this code
in a consistent fashion. The parser would have to be able to perform
the call to eval at compile time, and that would be impossible unless
all the references in the string to be evaluated could also be resolved,
and requiring that would be too restrictive (the string might come from
user input, or depend on things that are not known until the function is
evaluated).

Although Octave normally executes commands from script files that
have the name ‘file.m’, you can use the function source to execute com-
mands from any file.

Built-in Functionsource (file)
Parse and execute the contents of file. This is equivalent to executing
commands from a script file, but without requiring the file to be named
‘file.m’.

11.8 Dynamically Linked Functions

On some systems, Octave can dynamically load and execute functions
written in C++. Octave can only directly call functions written in C++,
but you can also load functions written in other languages by calling them
from a simple wrapper function written in C++.

Here is an example of how to write a C++ function that Octave can
load, with commentary. The source for this function is included in the
source distributions of Octave, in the file ‘examples/oregonator.cc’. It
defines the same set of differential equations that are used in the example
problem of Section 20.1 [Ordinary Differential Equations], page 195. By
running that example and this one, we can compare the execution times
to see what sort of increase in speed you can expect by using dynamically
linked functions.

114 GNU Octave

The function defined in ‘oregonator.cc’ contains just 8 statements,
and is not much different than the code defined in the corresponding M-file
(also distributed with Octave in the file ‘examples/oregonator.m’).

Here is the complete text of ‘oregonator.cc’:

#include <octave/oct.h>

DEFUN_DLD (oregonator, args, ,
"The ‘oregonator’.")

{
ColumnVector dx (3);

ColumnVector x = args(0).vector_value ();

dx(0) = 77.27 * (x(1) - x(0)*x(1) + x(0)
- 8.375e-06*pow (x(0), 2));

dx(1) = (x(2) - x(0)*x(1) - x(1)) / 77.27;

dx(2) = 0.161*(x(0) - x(2));

return octave_value (dx);
}

The first line of the file,

#include <octave/oct.h>

includes declarations for all of Octave’s internal functions that you will
need. If you need other functions from the standard C++ or C libraries,
you can include the necessary headers here.

The next two lines

DEFUN_DLD (oregonator, args, ,
"The ‘oregonator’.")

declares the function. The macro DEFUN_DLD and the macros that
it depends on are defined in the files ‘defun-dld.h’, ‘defun.h’, and
‘defun-int.h’ (these files are included in the header file ‘octave/oct.h’).

Note that the third parameter to DEFUN_DLD (nargout) is not used, so
it is omitted from the list of arguments to in order to avoid the warning
from gcc about an unused function parameter.
simply declares an object to store the right hand sides of the differential
equation, and

The statement

ColumnVector x = args(0).vector_value ();

Chapter 11: Functions and Script Files 115

extracts a column vector from the input arguments. The variable args
is passed to functions defined with DEFUN_DLD as an octave_value_list
object, which includes methods for getting the length of the list and ex-
tracting individual elements.

In this example, we don’t check for errors, but that is not difficult. All
of the Octave’s built-in functions do some form of checking on their argu-
ments, so you can check the source code for those functions for examples
of various strategies for verifying that the correct number and types of
arguments have been supplied.

The next statements
ColumnVector dx (3);

dx(0) = 77.27 * (x(1) - x(0)*x(1) + x(0)
- 8.375e-06*pow (x(0), 2));

dx(1) = (x(2) - x(0)*x(1) - x(1)) / 77.27;

dx(2) = 0.161*(x(0) - x(2));

define the right hand side of the differential equation. Finally, we can
return dx:

return octave_value (dx);

The actual return type is octave_value_list, but it is only necessary
to convert the return type to an octave_value because there is a default
constructor that can automatically create an object of that type from an
octave_value object, so we can just use that instead.

To use this file, your version of Octave must support dynamic linking.
To find out if it does, type the command octave_config_info ("dld")
at the Octave prompt. Support for dynamic linking is included if this
command returns 1.

To compile the example file, type the command ‘mkoctfile
oregonator.cc’ at the shell prompt. The script mkoctfile should
have been installed along with Octave. Running it will create a file
called ‘oregonator.oct’ that can be loaded by Octave. To test the
‘oregonator.oct’ file, start Octave and type the command

oregonator ([1, 2, 3], 0)

at the Octave prompt. Octave should respond by printing
ans =

77.269353
-0.012942
-0.322000

116 GNU Octave

You can now use the ‘oregonator.oct’ file just as you would the
oregonator.m file to solve the set of differential equations.

On a 133 MHz Pentium running Linux, Octave can solve the problem
shown in Section 20.1 [Ordinary Differential Equations], page 195 in about
1.4 second using the dynamically linked function, compared to about 19
seconds using the M-file. Similar decreases in execution time can be ex-
pected for other functions, particularly those that rely on functions like
lsode that require user-supplied functions.

Just as for M-files, Octave will automatically reload dynamically linked
functions when the files that define them are more recent than the last
time that the function was loaded. Two variables are available to control
how Octave behaves when dynamically linked functions are cleared or
reloaded.

Built-in Variableauto unload dot oct files
If the value of auto_unload_dot_oct_files is nonzero, Octave will
automatically unload any ‘.oct’ files when there are no longer any
functions in the symbol table that reference them.

Built-in Variablewarn reload forces clear
If several functions have been loaded from the same file, Octave must
clear all the functions before any one of them can be reloaded. If warn_
reload_forces_clear, Octave will warn you when this happens, and
print a list of the additional functions that it is forced to clear.

Additional examples for writing dynamically linked functions are avail-
able in the files in the ‘src’ directory of the Octave distribution. Currently,
this includes the files

balance.cc fft2.cc inv.cc qzval.cc
chol.cc filter.cc log.cc schur.cc
colloc.cc find.cc lsode.cc sort.cc
dassl.cc fsolve.cc lu.cc svd.cc
det.cc givens.cc minmax.cc syl.cc
eig.cc hess.cc pinv.cc
expm.cc ifft.cc qr.cc
fft.cc ifft2.cc quad.cc

These files use the macro DEFUN_DLD_BUILTIN instead of DEFUN_DLD. The
difference between these two macros is just that DEFUN_DLD_BUILTIN can
define a built-in function that is not dynamically loaded if the operating
system does not support dynamic linking. To define your own dynamically
linked functions you should use DEFUN_DLD.

Chapter 11: Functions and Script Files 117

There is currently no detailed description of all the functions that you
can call in a built-in function. For the time being, you will have to read
the source code for Octave.

11.9 Organization of Functions Distributed
with Octave

Many of Octave’s standard functions are distributed as function
files. They are loosely organized by topic, in subdirectories of ‘octave-
home/lib/octave/version/m’, to make it easier to find them.

The following is a list of all the function file subdirectories, and the
types of functions you will find there.

‘audio’ Functions for playing and recording sounds.

‘control’ Functions for design and simulation of automatic control sys-
tems.

‘elfun’ Elementary functions.

‘general’ Miscellaneous matrix manipulations, like flipud, rot90,
and triu, as well as other basic functions, like is_matrix,
nargchk, etc.

‘image’ Image processing tools. These functions require the X Win-
dow System.

‘io’ Input-ouput functions.

‘linear-algebra’
Functions for linear algebra.

‘miscellaneous’
Functions that don’t really belong anywhere else.

‘plot’ A set of functions that implement the Matlab-like plotting
functions.

‘polynomial’
Functions for manipulating polynomials.

‘set’ Functions for creating and manipulating sets of unique val-
ues.

‘signal’ Functions for signal processing applications.

‘specfun’ Special functions.

‘special-matrix’
Functions that create special matrix forms.

118 GNU Octave

‘startup’ Octave’s system-wide startup file.

‘statistics’
Statistical functions.

‘strings’ Miscellaneous string-handling functions.

‘time’ Functions related to time keeping.

Chapter 12: Error Handling 119

12 Error Handling

Octave includes several functions for printing error and warning mes-
sages. When you write functions that need to take special action when
they encounter abnormal conditions, you should print the error messages
using the functions described in this chapter.

Built-in Functionerror (template, ...)
The error function formats the optional arguments under the control
of the template string template using the same rules as the printf
family of functions (see Section 13.2.4 [Formatted Output], page 133).
The resulting message is prefixed by the string ‘error: ’ and printed
on the stderr stream.
Calling error also sets Octave’s internal error state such that control
will return to the top level without evaluating any more commands.
This is useful for aborting from functions or scripts.
If the error message does not end with a new line character, Octave
will print a traceback of all the function calls leading to the error. For
example, given the following function definitions:

function f () g () end
function g () h () end
function h () nargin == 1 || error ("nargin != 1"); end

calling the function f will result in a list of messages that can help you
to quickly locate the exact location of the error:

f ()

error: nargin != 1

error: evaluating index expression near line 1, column 30

error: evaluating binary operator ‘||’ near line 1, column 27

error: called from ‘h’

error: called from ‘g’

error: called from ‘f’

If the error message ends in a new line character, Octave will print
the message but will not display any traceback messages as it returns
control to the top level. For example, modifying the error message in
the previous example to end in a new line causes Octave to only print
a single message:

function h () nargin == 1 || error ("nargin != 1\n"); end

f ()

error: nargin != 1

120 GNU Octave

Built-in Variableerror text
This variable contains the text of error messages that would have been
printed in the body of the most recent unwind_protect or try state-
ment or the try part of the most recent call to the eval function.
Outside of the unwind_protect and try statements or the eval func-
tion, or if no error has occurred within them, the value of error_text
is guaranteed to be the empty string.
Note that the message does not include the first ‘error: ’ prefix, so
that it may easily be passed to the error function without additional
processing1.
See Section 10.8 [The try Statement], page 99 and Section 10.7 [The
unwind protect Statement], page 98.

Built-in Variablebeep on error
If the value of beep_on_error is nonzero, Octave will try to ring your
terminal’s bell before printing an error message. The default value is
0.

Built-in Functionwarning (msg)
Print a warning message msg prefixed by the string ‘warning: ’. After
printing the warning message, Octave will continue to execute com-
mands. You should use this function should when you want to notify
the user of an unusual condition, but only when it makes sense for
your program to go on.

Built-in Functionusage (msg)
Print the message msg, prefixed by the string ‘usage: ’, and set Oc-
tave’s internal error state such that control will return to the top level
without evaluating any more commands. This is useful for aborting
from functions.
After usage is evaluated, Octave will print a traceback of all the func-
tion calls leading to the usage message.
You should use this function for reporting problems errors that result
from an improper call to a function, such as calling a function with an
incorrect number of arguments, or with arguments of the wrong type.
For example, most functions distributed with Octave begin with code
like this

if (nargin != 2)
usage ("foo (a, b)");

endif

to check for the proper number of arguments.

1 Yes, it’s a kluge, but it seems to be a reasonably useful one.

Chapter 12: Error Handling 121

The following pair of functions are of limited usefulness, and may be
removed from future versions of Octave.

Function Fileperror (name, num)
Print the error message for function name corresponding to the error
number num. This function is intended to be used to print useful error
messages for those functions that return numeric error codes.

Function Filestrerror (name, num)
Return the text of an error message for function name corresponding
to the error number num. This function is intended to be used to
print useful error messages for those functions that return numeric
error codes.

122 GNU Octave

Chapter 13: Input and Output 123

13 Input and Output

There are two distinct classes of input and output functions. The first
set are modeled after the functions available in Matlab. The second set
are modeled after the standard I/O library used by the C programming
language and offer more flexibility and control over the output.

When running interactively, Octave normally sends any output in-
tended for your terminal that is more than one screen long to a paging
program, such as less or more. This avoids the problem of having a large
volume of output stream by before you can read it. With less (and some
versions of more) you can also scan forward and backward, and search for
specific items.

Normally, no output is displayed by the pager until just before Octave
is ready to print the top level prompt, or read from the standard input
(for example, by using the fscanf or scanf functions). This means that
there may be some delay before any output appears on your screen if you
have asked Octave to perform a significant amount of work with a single
command statement. The function fflush may be used to force output
to be sent to the pager (or any other stream) immediately.

You can select the program to run as the pager by setting the variable
PAGER, and you can turn paging off by setting the value of the variable
page_screen_output to 0.

Commandmore
Commandmore on
Commandmore off

Turn output pagination on or off. Without an argument, more toggles
the current state.

Built-in VariablePAGER
The default value is normally "less", "more", or "pg", depending on
what programs are installed on your system. See Appendix C [Instal-
lation], page 259.
When running interactively, Octave sends any output intended for your
terminal that is more than one screen long to the program named by
the value of the variable PAGER.

Built-in Variablepage screen output
If the value of page_screen_output is nonzero, all output intended
for the screen that is longer than one page is sent through a pager.
This allows you to view one screenful at a time. Some pagers (such
as less—see Appendix C [Installation], page 259) are also capable of
moving backward on the output. The default value is 1.

124 GNU Octave

Built-in Variablepage output immediately
If the value of page_output_immediately is nonzero, Octave sends
output to the pager as soon as it is available. Otherwise, Octave
buffers its output and waits until just before the prompt is printed to
flush it to the pager. The default value is 0.

Built-in Functionfflush (fid)
Flush output to fid. This is useful for ensuring that all pending
output makes it to the screen before some other event occurs. For
example, it is always a good idea to flush the standard output
stream before calling input.

13.1 Basic Input and Output

13.1.1 Terminal Output

Since Octave normally prints the value of an expression as soon as it
has been evaluated, the simplest of all I/O functions is a simple expression.
For example, the following expression will display the value of pi

pi
� pi = 3.1416

This works well as long as it is acceptable to have the name of the
variable (or ‘ans’) printed along with the value. To print the value of a
variable without printing its name, use the function disp.

The format command offers some control over the way Octave prints
values with disp and through the normal echoing mechanism.

Built-in Variableans
This variable holds the most recently computed result that was not
explicitly assigned to a variable. For example, after the expression

3^2 + 4^2

is evaluated, the value of ans is 25.

Built-in Functiondisp (x)
Display the value of x. For example,

disp ("The value of pi is:"), disp (pi)

� the value of pi is:
� 3.1416

Note that the output from disp always ends with a newline.

Chapter 13: Input and Output 125

Commandformat options
Control the format of the output produced by disp and Octave’s nor-
mal echoing mechanism. Valid options are listed in the following table.

short Octave will try to print numbers with at least 3 significant
figures within a field that is a maximum of 8 characters
wide.
If Octave is unable to format a matrix so that columns
line up on the decimal point and all the numbers fit within
the maximum field width, it switches to an ‘e’ format.

long Octave will try to print numbers with at least 15 sig-
nificant figures within a field that is a maximum of 24
characters wide.
As will the ‘short’ format, Octave will switch to an ‘e’
format if it is unable to format a matrix so that columns
line up on the decimal point and all the numbers fit within
the maximum field width.

long e
short e The same as ‘format long’ or ‘format short’ but always

display output with an ‘e’ format. For example, with the
‘short e’ format, pi is displayed as 3.14e+00.

long E
short E The same as ‘format long e’ or ‘format short e’ but

always display output with an uppercase ‘E’ format. For
example, with the ‘long E’ format, pi is displayed as 3.
14159265358979E+00.

free
none Print output in free format, without trying to line

up columns of matrices on the decimal point. This
also causes complex numbers to be formatted like this
‘(0.604194, 0.607088)’ instead of like this ‘0.60419 +
0.60709i’.

bank Print in a fixed format with two places to the right of the
decimal point.

+ Print a ‘+’ symbol for nonzero matrix elements and a
space for zero matrix elements. This format can be very
useful for examining the structure of a large matrix.

hex Print the hexadecimal representation numbers as they are
stored in memory. For example, on a workstation which
stores 8 byte real values in IEEE format with the least

126 GNU Octave

significant byte first, the value of pi when printed in hex
format is 400921fb54442d18. This format only works for
numeric values.

bit Print the bit representation of numbers as stored in mem-
ory. For example, the value of pi is

01000000000010010010000111111011
01010100010001000010110100011000

(shown here in two 32 bit sections for typesetting pur-
poses) when printed in bit format on a workstation which
stores 8 byte real values in IEEE format with the least
significant byte first. This format only works for numeric
types.

By default, Octave will try to print numbers with at least 5 significant
figures within a field that is a maximum of 10 characters wide.
If Octave is unable to format a matrix so that columns line up on the
decimal point and all the numbers fit within the maximum field width,
it switches to an ‘e’ format.
If format is invoked without any options, the default format state is
restored.

Built-in Variableprint answer id name
If the value of print_answer_id_name is nonzero, variable names are
printed along with the result. Otherwise, only the result values are
printed. The default value is 1.

13.1.2 Terminal Input

Octave has three functions that make it easy to prompt users for in-
put. The input and menu functions are normally used for managing an
interactive dialog with a user, and the keyboard function is normally used
for doing simple debugging.

Built-in Functioninput (prompt)
Built-in Functioninput (prompt, "s")

Print a prompt and wait for user input. For example,
input ("Pick a number, any number! ")

prints the prompt
Pick a number, any number!

and waits for the user to enter a value. The string entered by the user
is evaluated as an expression, so it may be a literal constant, a variable
name, or any other valid expression.

Chapter 13: Input and Output 127

Currently, input only returns one value, regardless of the number of
values produced by the evaluation of the expression.
If you are only interested in getting a literal string value, you can call
input with the character string "s" as the second argument. This
tells Octave to return the string entered by the user directly, without
evaluating it first.
Because there may be output waiting to be displayed by the pager, it
is a good idea to always call fflush (stdout) before calling input.
This will ensure that all pending output is written to the screen before
your prompt. See Chapter 13 [Input and Output], page 123.

Function Filemenu (title, opt1, ...)
Print a title string followed by a series of options. Each option will
be printed along with a number. The return value is the number of
the option selected by the user. This function is useful for interactive
programs. There is no limit to the number of options that may be
passed in, but it may be confusing to present more than will fit easily
on one screen.

Built-in Functionkeyboard (prompt)
This function is normally used for simple debugging. When the
keyboard function is executed, Octave prints a prompt and waits for
user input. The input strings are then evaluated and the results are
printed. This makes it possible to examine the values of variables
within a function, and to assign new values to variables. No value is
returned from the keyboard function, and it continues to prompt for
input until the user types ‘quit’, or ‘exit’.
If keyboard is invoked without any arguments, a default prompt of
‘debug> ’ is used.

For both input and keyboard, the normal command line history and
editing functions are available at the prompt.

Octave also has a function that makes it possible to get a single char-
acter from the keyboard without requiring the user to type a carriage
return.

Built-in Functionkbhit ()
Read a single keystroke from the keyboard. For example,

x = kbhit ();

will set x to the next character typed at the keyboard as soon as it is
typed.

128 GNU Octave

13.1.3 Simple File I/O

The save and load commands allow data to be written to and read
from disk files in various formats. The default format of files written by
the save command can be controlled using the built-in variables default_
save_format and save_precision.

Note that Octave can not yet save or load structure variables or any
user-defined types.

Commandsave options file v1 v2 . . .
Save the named variables v1, v2, . . . in the file file. The special file-
name ‘-’ can be used to write the output to your terminal. If no
variable names are listed, Octave saves all the variables in the current
scope. Valid options for the save command are listed in the follow-
ing table. Options that modify the output format override the format
specified by the built-in variable default_save_format.

-ascii Save the data in Octave’s text data format.

-binary Save the data in Octave’s binary data format.

-float-binary
Save the data in Octave’s binary data format but only
using single precision. You should use this format only
if you know that all the values to be saved can be repre-
sented in single precision.

-mat-binary
Save the data in Matlab’s binary data format.

-save-builtins
Force Octave to save the values of built-in variables too.
By default, Octave does not save built-in variables.

The list of variables to save may include wildcard patterns containing
the following special characters:

? Match any single character.

* Match zero or more characters.

[list] Match the list of characters specified by list. If the first
character is ! or ^, match all characters except those
specified by list. For example, the pattern ‘[a-zA-Z]’
will match all lower and upper case alphabetic characters.

Except when using the Matlab binary data file format, saving global
variables also saves the global status of the variable, so that if it is

Chapter 13: Input and Output 129

restored at a later time using ‘load’, it will be restored as a global
variable.
The command

save -binary data a b*

saves the variable ‘a’ and all variables beginning with ‘b’ to the file
‘data’ in Octave’s binary format.

There are two variables that modify the behavior of save and one that
controls whether variables are saved when Octave exits unexpectedly.

Built-in Variablecrash dumps octave core
If this variable is set to a nonzero value, Octave tries to save all current
variables the the file "octave-core" if it crashes or receives a hangup,
terminate or similar signal. The default value is 1.

Built-in Variabledefault save format
This variable specifies the default format for the save command. It
should have one of the following values: "ascii", "binary", float-
binary, or "mat-binary". The initial default save format is Octave’s
text format.

Built-in Variablesave precision
This variable specifies the number of digits to keep when saving data
in text format. The default value is 17.

Commandload options file v1 v2 . . .
Load the named variables from the file file. As with save, you may
specify a list of variables and load will only extract those variables
with names that match. For example, to restore the variables saved in
the file ‘data’, use the command

load data

Octave will refuse to overwrite existing variables unless you use the
option ‘-force’.
If a variable that is not marked as global is loaded from a file when a
global symbol with the same name already exists, it is loaded in the
global symbol table. Also, if a variable is marked as global in a file and
a local symbol exists, the local symbol is moved to the global symbol
table and given the value from the file. Since it seems that both of
these cases are likely to be the result of some sort of error, they will
generate warnings.
The load command can read data stored in Octave’s text and binary
formats, and Matlab’s binary format. It will automatically detect

130 GNU Octave

the type of file and do conversion from different floating point formats
(currently only IEEE big and little endian, though other formats may
added in the future).
Valid options for load are listed in the following table.

-force Force variables currently in memory to be overwritten by
variables with the same name found in the file.

-ascii Force Octave to assume the file is in Octave’s text format.

-binary Force Octave to assume the file is in Octave’s binary for-
mat.

-mat-binary
Force Octave to assume the file is in Matlab’s binary
format.

13.2 C-Style I/O Functions

Octave’s C-style input and output functions provide most of the func-
tionality of the C programming language’s standard I/O library. The
argument lists for some of the input functions are slightly different, how-
ever, because Octave has no way of passing arguments by reference.

In the following, file refers to a file name and fid refers to an integer
file number, as returned by fopen.

There are three files that are always available. Although these files can
be accessed using their corresponding numeric file ids, you should always
use the symbolic names given in the table below, since it will make your
programs easier to understand.

Built-in Variablestdin
The standard input stream (file id 0). When Octave is used interac-
tively, this is filtered through the command line editing functions.

Built-in Variablestdout
The standard output stream (file id 1). Data written to the standard
output is normally filtered through the pager.

Built-in Variablestderr
The standard error stream (file id 2). Even if paging is turned on, the
standard error is not sent to the pager. It is useful for error messages
and prompts.

Chapter 13: Input and Output 131

13.2.1 Opening and Closing Files

Built-in Function[fid, msg] = fopen (name, mode, arch)
Built-in Functionfid list = fopen ("all")
Built-in Functionfile = fopen (fid)

The first form of the fopen function opens the named file with the
specified mode (read-write, read-only, etc.) and architecture interpre-
tation (IEEE big endian, IEEE little endian, etc.), and returns an
integer value that may be used to refer to the file later. If an error
occurs, fid is set to −1 and msg contains the corresponding system er-
ror message. The mode is a one or two character string that specifies
whether the file is to be opened for reading, writing, or both.
The second form of the fopen function returns a vector of file ids corre-
sponding to all the currently open files, excluding the stdin, stdout,
and stderr streams.
The third form of the fopen function returns the name of a currently
open file given its file id.
For example,

myfile = fopen ("splat.dat", "r", "ieee-le");

opens the file ‘splat.dat’ for reading. If necessary, binary numeric
values will be read assuming they are stored in IEEE format with the
least significant bit first, and then converted to the native representa-
tion.
Opening a file that is already open simply opens it again and returns
a separate file id. It is not an error to open a file several times, though
writing to the same file through several different file ids may produce
unexpected results.
The possible values ‘mode’ may have are

‘r’ Open a file for reading.

‘w’ Open a file for writing. The previous contents are dis-
cared.

‘a’ Open or create a file for writing at the end of the file.

‘r+’ Open an existing file for reading and writing.

‘w+’ Open a file for reading or writing. The previous contents
are discarded.

‘a+’ Open or create a file for reading or writing at the end of
the file.

The parameter arch is a string specifying the default data format for
the file. Valid values for arch are:

132 GNU Octave

‘native’ The format of the current machine (this is the
default).
‘ieee-le’ IEEE big endian format.
‘ieee-be’ IEEE little endian format.
‘vaxd’ VAX D floating format.
‘vaxg’ VAX G floating format.
‘cray’ Cray floating format.

however, conversions are currently only supported for ‘native’
‘ieee-be’, and ‘ieee-le’ formats.

Built-in Functionfclose (fid)
Closes the specified file. If an error is encountered while trying to close
the file, an error message is printed and fclose returns 0. Otherwise,
it returns 1.

13.2.2 Simple Output

Built-in Functionfputs (fid, string)
Write a string to a file with no formatting.

Built-in Functionputs (string)
Write a string to the standard output with no formatting.

13.2.3 Line-Oriented Input

Built-in Functionfgetl (fid, len)
Read characters from a file, stopping after a newline, or EOF, or len
characters have been read. The characters read, excluding the possible
trailing newline, are returned as a string.
If len is omitted, fgetl reads until the next newline character.
If there are no more characters to read, fgetl returns −1.

Built-in Functionfgets (fid, len)
Read characters from a file, stopping after a newline, or EOF, or len
characters have been read. The characters read, including the possible
trailing newline, are returned as a string.
If len is omitted, fgets reads until the next newline character.
If there are no more characters to read, fgets returns −1.

Chapter 13: Input and Output 133

13.2.4 Formatted Output

This section describes how to call printf and related functions.
The following functions are available for formatted output. They are

modelled after the C language functions of the same name, but they inter-
pret the format template differently in order to improve the performance
of printing vector and matrix values.

Function Fileprintf (template, ...)
The printf function prints the optional arguments under the control
of the template string template to the stream stdout.

Built-in Functionfprintf (fid, template, ...)
This function is just like printf, except that the output is written to
the stream fid instead of stdout.

Built-in Functionsprintf (template, ...)
This is like printf, except that the output is returned as a string.
Unlike the C library function, which requires you to provide a suitably
sized string as an argument, Octave’s sprintf function returns the
string, automatically sized to hold all of the items converted.

The printf function can be used to print any number of arguments.
The template string argument you supply in a call provides information
not only about the number of additional arguments, but also about their
types and what style should be used for printing them.

Ordinary characters in the template string are simply written to the
output stream as-is, while conversion specifications introduced by a ‘%’
character in the template cause subsequent arguments to be formatted
and written to the output stream. For example,

pct = 37;

filename = "foo.txt";

printf ("Processing of ‘%s’ is %d%% finished.\nPlease wait.\n",

filename, pct);

produces output like
Processing of ‘foo.txt’ is 37% finished.

Please be patient.

This example shows the use of the ‘%d’ conversion to specify that a
scalar argument should be printed in decimal notation, the ‘%s’ conversion
to specify printing of a string argument, and the ‘%%’ conversion to print
a literal ‘%’ character.

134 GNU Octave

There are also conversions for printing an integer argument as an un-
signed value in octal, decimal, or hexadecimal radix (‘%o’, ‘%u’, or ‘%x’,
respectively); or as a character value (‘%c’).

Floating-point numbers can be printed in normal, fixed-point notation
using the ‘%f’ conversion or in exponential notation using the ‘%e’ con-
version. The ‘%g’ conversion uses either ‘%e’ or ‘%f’ format, depending on
what is more appropriate for the magnitude of the particular number.

You can control formatting more precisely by writing modifiers be-
tween the ‘%’ and the character that indicates which conversion to apply.
These slightly alter the ordinary behavior of the conversion. For exam-
ple, most conversion specifications permit you to specify a minimum field
width and a flag indicating whether you want the result left- or right-
justified within the field.

The specific flags and modifiers that are permitted and their interpre-
tation vary depending on the particular conversion. They’re all described
in more detail in the following sections.

13.2.5 Output Conversion for Matrices

When given a matrix value, Octave’s formatted output functions cycle
through the format template until all the values in the matrix have been
printed. For example,

printf ("%4.2f %10.2e %8.4g\n", hilb (3));

� 1.00 5.00e-01 0.3333
� 0.50 3.33e-01 0.25
� 0.33 2.50e-01 0.2

If more than one value is to be printed in a single call, the output
functions do not return to the beginning of the format template when
moving on from one value to the next. This can lead to confusing output
if the number of elements in the matrices are not exact multiples of the
number of conversions in the format template. For example,

printf ("%4.2f %10.2e %8.4g\n", [1, 2], [3, 4]);

� 1.00 2.00e+00 3
� 4.00

If this is not what you want, use a series of calls instead of just one.

13.2.6 Output Conversion Syntax

This section provides details about the precise syntax of conversion
specifications that can appear in a printf template string.

Chapter 13: Input and Output 135

Characters in the template string that are not part of a conversion
specification are printed as-is to the output stream.

The conversion specifications in a printf template string have the
general form:

% flags width [. precision] type conversion

For example, in the conversion specifier ‘%-10.8ld’, the ‘-’ is a flag,
‘10’ specifies the field width, the precision is ‘8’, the letter ‘l’ is a type
modifier, and ‘d’ specifies the conversion style. (This particular type speci-
fier says to print a numeric argument in decimal notation, with a minimum
of 8 digits left-justified in a field at least 10 characters wide.)

In more detail, output conversion specifications consist of an initial ‘%’
character followed in sequence by:
• Zero or more flag characters that modify the normal behavior of the

conversion specification.
• An optional decimal integer specifying the minimum field width. If

the normal conversion produces fewer characters than this, the field
is padded with spaces to the specified width. This is a minimum
value; if the normal conversion produces more characters than this,
the field is not truncated. Normally, the output is right-justified
within the field.
You can also specify a field width of ‘*’. This means that the next
argument in the argument list (before the actual value to be printed)
is used as the field width. The value is rounded to the nearest integer.
If the value is negative, this means to set the ‘-’ flag (see below) and
to use the absolute value as the field width.

• An optional precision to specify the number of digits to be written for
the numeric conversions. If the precision is specified, it consists of a
period (‘.’) followed optionally by a decimal integer (which defaults
to zero if omitted).
You can also specify a precision of ‘*’. This means that the next
argument in the argument list (before the actual value to be printed)
is used as the precision. The value must be an integer, and is ignored
if it is negative.

• An optional type modifier character. This character is ignored by
Octave’s printf function, but is recognized to provide compatibility
with the C language printf.

• A character that specifies the conversion to be applied.

The exact options that are permitted and how they are interpreted
vary between the different conversion specifiers. See the descriptions of
the individual conversions for information about the particular options
that they use.

136 GNU Octave

13.2.7 Table of Output Conversions

Here is a table summarizing what all the different conversions do:

‘%d’, ‘%i’ Print an integer as a signed decimal number. See Sec-
tion 13.2.8 [Integer Conversions], page 137, for details. ‘%d’
and ‘%i’ are synonymous for output, but are different when
used with scanf for input (see Section 13.2.13 [Table of In-
put Conversions], page 141).

‘%o’ Print an integer as an unsigned octal number. See Sec-
tion 13.2.8 [Integer Conversions], page 137, for details.

‘%u’ Print an integer as an unsigned decimal number. See Sec-
tion 13.2.8 [Integer Conversions], page 137, for details.

‘%x’, ‘%X’ Print an integer as an unsigned hexadecimal number. ‘%x’
uses lower-case letters and ‘%X’ uses upper-case. See Sec-
tion 13.2.8 [Integer Conversions], page 137, for details.

‘%f’ Print a floating-point number in normal (fixed-point) no-
tation. See Section 13.2.9 [Floating-Point Conversions],
page 137, for details.

‘%e’, ‘%E’ Print a floating-point number in exponential notation. ‘%e’
uses lower-case letters and ‘%E’ uses upper-case. See Sec-
tion 13.2.9 [Floating-Point Conversions], page 137, for de-
tails.

‘%g’, ‘%G’ Print a floating-point number in either normal (fixed-point)
or exponential notation, whichever is more appropriate for
its magnitude. ‘%g’ uses lower-case letters and ‘%G’ uses
upper-case. See Section 13.2.9 [Floating-Point Conversions],
page 137, for details.

‘%c’ Print a single character. See Section 13.2.10 [Other Output
Conversions], page 138.

‘%s’ Print a string. See Section 13.2.10 [Other Output Conver-
sions], page 138.

‘%%’ Print a literal ‘%’ character. See Section 13.2.10 [Other Out-
put Conversions], page 138.

If the syntax of a conversion specification is invalid, unpredictable
things will happen, so don’t do this. If there aren’t enough function ar-
guments provided to supply values for all the conversion specifications
in the template string, or if the arguments are not of the correct types,
the results are unpredictable. If you supply more arguments than conver-
sion specifications, the extra argument values are simply ignored; this is
sometimes useful.

Chapter 13: Input and Output 137

13.2.8 Integer Conversions

This section describes the options for the ‘%d’, ‘%i’, ‘%o’, ‘%u’, ‘%x’, and
‘%X’ conversion specifications. These conversions print integers in various
formats.

The ‘%d’ and ‘%i’ conversion specifications both print an numeric ar-
gument as a signed decimal number; while ‘%o’, ‘%u’, and ‘%x’ print the
argument as an unsigned octal, decimal, or hexadecimal number (respec-
tively). The ‘%X’ conversion specification is just like ‘%x’ except that it
uses the characters ‘ABCDEF’ as digits instead of ‘abcdef’.

The following flags are meaningful:

‘-’ Left-justify the result in the field (instead of the normal
right-justification).

‘+’ For the signed ‘%d’ and ‘%i’ conversions, print a plus sign if
the value is positive.

‘ ’ For the signed ‘%d’ and ‘%i’ conversions, if the result doesn’t
start with a plus or minus sign, prefix it with a space charac-
ter instead. Since the ‘+’ flag ensures that the result includes
a sign, this flag is ignored if you supply both of them.

‘#’ For the ‘%o’ conversion, this forces the leading digit to be
‘0’, as if by increasing the precision. For ‘%x’ or ‘%X’, this
prefixes a leading ‘0x’ or ‘0X’ (respectively) to the result.
This doesn’t do anything useful for the ‘%d’, ‘%i’, or ‘%u’
conversions.

‘0’ Pad the field with zeros instead of spaces. The zeros are
placed after any indication of sign or base. This flag is ig-
nored if the ‘-’ flag is also specified, or if a precision is spec-
ified.

If a precision is supplied, it specifies the minimum number of digits
to appear; leading zeros are produced if necessary. If you don’t specify
a precision, the number is printed with as many digits as it needs. If
you convert a value of zero with an explicit precision of zero, then no
characters at all are produced.

13.2.9 Floating-Point Conversions

This section discusses the conversion specifications for floating-point
numbers: the ‘%f’, ‘%e’, ‘%E’, ‘%g’, and ‘%G’ conversions.

The ‘%f’ conversion prints its argument in fixed-point notation, pro-
ducing output of the form [-]ddd.ddd, where the number of digits follow-
ing the decimal point is controlled by the precision you specify.

138 GNU Octave

The ‘%e’ conversion prints its argument in exponential notation, pro-
ducing output of the form [-]d.ddde[+|-]dd. Again, the number of digits
following the decimal point is controlled by the precision. The exponent
always contains at least two digits. The ‘%E’ conversion is similar but the
exponent is marked with the letter ‘E’ instead of ‘e’.

The ‘%g’ and ‘%G’ conversions print the argument in the style of ‘%e’ or
‘%E’ (respectively) if the exponent would be less than -4 or greater than
or equal to the precision; otherwise they use the ‘%f’ style. Trailing zeros
are removed from the fractional portion of the result and a decimal-point
character appears only if it is followed by a digit.

The following flags can be used to modify the behavior:

‘-’ Left-justify the result in the field. Normally the result is
right-justified.

‘+’ Always include a plus or minus sign in the result.

‘ ’ If the result doesn’t start with a plus or minus sign, prefix
it with a space instead. Since the ‘+’ flag ensures that the
result includes a sign, this flag is ignored if you supply both
of them.

‘#’ Specifies that the result should always include a decimal
point, even if no digits follow it. For the ‘%g’ and ‘%G’ conver-
sions, this also forces trailing zeros after the decimal point
to be left in place where they would otherwise be removed.

‘0’ Pad the field with zeros instead of spaces; the zeros are
placed after any sign. This flag is ignored if the ‘-’ flag
is also specified.

The precision specifies how many digits follow the decimal-point char-
acter for the ‘%f’, ‘%e’, and ‘%E’ conversions. For these conversions, the
default precision is 6. If the precision is explicitly 0, this suppresses the
decimal point character entirely. For the ‘%g’ and ‘%G’ conversions, the
precision specifies how many significant digits to print. Significant digits
are the first digit before the decimal point, and all the digits after it. If the
precision is 0 or not specified for ‘%g’ or ‘%G’, it is treated like a value of 1.
If the value being printed cannot be expressed precisely in the specified
number of digits, the value is rounded to the nearest number that fits.

13.2.10 Other Output Conversions

This section describes miscellaneous conversions for printf.
The ‘%c’ conversion prints a single character. The ‘-’ flag can be used

to specify left-justification in the field, but no other flags are defined, and
no precision or type modifier can be given. For example:

Chapter 13: Input and Output 139

printf ("%c%c%c%c%c", "h", "e", "l", "l", "o");

prints ‘hello’.
The ‘%s’ conversion prints a string. The corresponding argument must

be a string. A precision can be specified to indicate the maximum number
of characters to write; otherwise characters in the string up to but not
including the terminating null character are written to the output stream.
The ‘-’ flag can be used to specify left-justification in the field, but no
other flags or type modifiers are defined for this conversion. For example:

printf ("%3s%-6s", "no", "where");

prints ‘ nowhere ’ (note the leading and trailing spaces).

13.2.11 Formatted Input

Octave provides the scanf, fscanf, and sscanf functions to read
formatted input. There are two forms of each of these functions. One
can be used to extract vectors of data from a file, and the other is more
‘C-like’.

Built-in Function[val, count] = fscanf (fid, template, size)
Built-in Function[v1, v2, ...] = fscanf (fid, template, "C")

In the first form, read from fid according to template, returning the
result in the matrix val.
The optional argument size specifies the amount of data to read and
may be one of

Inf Read as much as possible, returning a column vector.

nr Read up to nr elements, returning a column vector.

[nr, Inf] Read as much as possible, returning a matrix with nr
rows. If the number of elements read is not an exact
multiple of nr, the last column is padded with zeros.

[nr, nc] Read up to nr * nc elements, returning a matrix with
nr rows. If the number of elements read is not an exact
multiple of nr, the last column is padded with zeros.

If size is omitted, a value of Inf is assumed.
A string is returned if template specifies only character conversions.
The number of items successfully read is returned in count.
In the second form, read from fid according to template, with each
conversion specifier in template corresponding to a single scalar return
value. This form is more ‘C-like’, and also compatible with previous
versions of Octave.

140 GNU Octave

Built-in Function[val, count] = sscanf (string, template, size)
Built-in Function[v1, v2, ...] = sscanf (string, template, "C")

This is like fscanf, except that the characters are taken from the
string string instead of from a stream. Reaching the end of the string
is treated as an end-of-file condition.

Built-in Function[val, count] = scanf (template, size)
Built-in Function[v1, v2, ...] = scanf (template, "C")

This is equivalent to calling fscanf with fid = stdin.

It is currently not useful to call scanf in interactive programs.

Calls to scanf are superficially similar to calls to printf in that ar-
bitrary arguments are read under the control of a template string. While
the syntax of the conversion specifications in the template is very sim-
ilar to that for printf, the interpretation of the template is oriented
more towards free-format input and simple pattern matching, rather than
fixed-field formatting. For example, most scanf conversions skip over
any amount of “white space” (including spaces, tabs, and newlines) in
the input file, and there is no concept of precision for the numeric input
conversions as there is for the corresponding output conversions. Ordi-
narily, non-whitespace characters in the template are expected to match
characters in the input stream exactly.

When a matching failure occurs, scanf returns immediately, leaving
the first non-matching character as the next character to be read from the
stream, and scanf returns all the items that were successfully converted.

The formatted input functions are not used as frequently as the for-
matted output functions. Partly, this is because it takes some care to
use them properly. Another reason is that it is difficult to recover from a
matching error.

13.2.12 Input Conversion Syntax

A scanf template string is a string that contains ordinary multibyte
characters interspersed with conversion specifications that start with ‘%’.

Any whitespace character in the template causes any number of white-
space characters in the input stream to be read and discarded. The white-
space characters that are matched need not be exactly the same white-
space characters that appear in the template string. For example, write ‘
, ’ in the template to recognize a comma with optional whitespace before
and after.

Chapter 13: Input and Output 141

Other characters in the template string that are not part of conversion
specifications must match characters in the input stream exactly; if this
is not the case, a matching failure occurs.

The conversion specifications in a scanf template string have the gen-
eral form:

% flags width type conversion

In more detail, an input conversion specification consists of an initial
‘%’ character followed in sequence by:
• An optional flag character ‘*’, which says to ignore the text read for

this specification. When scanf finds a conversion specification that
uses this flag, it reads input as directed by the rest of the conversion
specification, but it discards this input, does not return any valu,
and does not increment the count of successful assignments.

• An optional decimal integer that specifies the maximum field width.
Reading of characters from the input stream stops either when this
maximum is reached or when a non-matching character is found,
whichever happens first. Most conversions discard initial whitespace
characters, and these discarded characters don’t count towards the
maximum field width. Conversions that do not discard initial white-
space are explicitly documented.

• An optional type modifier character. This character is ignored by
Octave’s scanf function, but is recognized to provide compatibility
with the C language scanf.

• A character that specifies the conversion to be applied.

The exact options that are permitted and how they are interpreted
vary between the different conversion specifiers. See the descriptions of
the individual conversions for information about the particular options
that they allow.

13.2.13 Table of Input Conversions

Here is a table that summarizes the various conversion specifications:

‘%d’ Matches an optionally signed integer written in decimal. See
Section 13.2.14 [Numeric Input Conversions], page 142.

‘%i’ Matches an optionally signed integer in any of the formats
that the C language defines for specifying an integer con-
stant. See Section 13.2.14 [Numeric Input Conversions],
page 142.

‘%o’ Matches an unsigned integer written in octal radix. See Sec-
tion 13.2.14 [Numeric Input Conversions], page 142.

142 GNU Octave

‘%u’ Matches an unsigned integer written in decimal radix. See
Section 13.2.14 [Numeric Input Conversions], page 142.

‘%x’, ‘%X’ Matches an unsigned integer written in hexadecimal radix.
See Section 13.2.14 [Numeric Input Conversions], page 142.

‘%e’, ‘%f’, ‘%g’, ‘%E’, ‘%G’
Matches an optionally signed floating-point number. See
Section 13.2.14 [Numeric Input Conversions], page 142.

‘%s’ Matches a string containing only non-whitespace characters.
See Section 13.2.15 [String Input Conversions], page 143.

‘%c’ Matches a string of one or more characters; the number of
characters read is controlled by the maximum field width
given for the conversion. See Section 13.2.15 [String Input
Conversions], page 143.

‘%%’ This matches a literal ‘%’ character in the input stream. No
corresponding argument is used.

If the syntax of a conversion specification is invalid, the behavior is
undefined. If there aren’t enough function arguments provided to supply
addresses for all the conversion specifications in the template strings that
perform assignments, or if the arguments are not of the correct types,
the behavior is also undefined. On the other hand, extra arguments are
simply ignored.

13.2.14 Numeric Input Conversions

This section describes the scanf conversions for reading numeric val-
ues.

The ‘%d’ conversion matches an optionally signed integer in decimal
radix.

The ‘%i’ conversion matches an optionally signed integer in any of the
formats that the C language defines for specifying an integer constant.

For example, any of the strings ‘10’, ‘0xa’, or ‘012’ could be read in as
integers under the ‘%i’ conversion. Each of these specifies a number with
decimal value 10.

The ‘%o’, ‘%u’, and ‘%x’ conversions match unsigned integers in octal,
decimal, and hexadecimal radices, respectively.

The ‘%X’ conversion is identical to the ‘%x’ conversion. They both
permit either uppercase or lowercase letters to be used as digits.

Unlike the C language scanf, Octave ignores the ‘h’, ‘l’, and ‘L’ mod-
ifiers.

Chapter 13: Input and Output 143

13.2.15 String Input Conversions

This section describes the scanf input conversions for reading string
and character values: ‘%s’ and ‘%c’.

The ‘%c’ conversion is the simplest: it matches a fixed number of
characters, always. The maximum field with says how many characters to
read; if you don’t specify the maximum, the default is 1. This conversion
does not skip over initial whitespace characters. It reads precisely the
next n characters, and fails if it cannot get that many.

The ‘%s’ conversion matches a string of non-whitespace characters. It
skips and discards initial whitespace, but stops when it encounters more
whitespace after having read something.

For example, reading the input:
hello, world

with the conversion ‘%10c’ produces " hello, wo", but reading the same
input with the conversion ‘%10s’ produces "hello,".

13.2.16 Binary I/O

Octave can read and write binary data using the functions fread and
fwrite, which are patterned after the standard C functions with the same
names. The are able to automatically swap the byte order of integer data
and convert among ths supported floating point formats as the data are
read.

Built-in Function[val, count] = fread (fid, size, precision, skip,
arch)

Read binary data of type precision from the specified file ID fid.
The optional argument size specifies the amount of data to read and
may be one of

Inf Read as much as possible, returning a column vector.

nr Read up to nr elements, returning a column vector.

[nr, Inf] Read as much as possible, returning a matrix with nr
rows. If the number of elements read is not an exact
multiple of nr, the last column is padded with zeros.

[nr, nc] Read up to nr * nc elements, returning a matrix with
nr rows. If the number of elements read is not an exact
multiple of nr, the last column is padded with zeros.

If size is omitted, a value of Inf is assumed.
The optional argument precision is a string specifying the type of data
to read and may be one of

144 GNU Octave

"char"
"char*1"
"integer*1"
"int8" Single character.

"signed char"
"schar" Signed character.

"unsigned char"
"uchar" Unsigned character.

"short" Short integer.

"unsigned short"
"ushort" Unsigned short integer.

"int" Integer.

"unsigned int"
"uint" Unsigned integer.

"long" Long integer.

"unsigned long"
"ulong" Unsigned long integer.

"float"
"float32"
"real*4" Single precision float.

"double"
"float64"
"real*8" Double precision float.

"integer*2"
"int16" Two byte integer.

"integer*4"
"int32" Four byte integer.

The default precision is "uchar".
The optional argument skip specifies the number of bytes to skip before
each element is read. If it is not specified, a value of 0 is assumed.
The optional argument arch is a string specifying the data format for
the file. Valid values are

"native" The format of the current machine.

"ieee-le" IEEE big endian.

"ieee-be" IEEE little endian.

Chapter 13: Input and Output 145

"vaxd" VAX D floating format.

"vaxg" VAX G floating format.

"cray" Cray floating format.

Conversions are currently only supported for "ieee-be" and "ieee-
le" formats.
The data read from the file is returned in val, and the number of values
read is returned in count

Built-in Functioncount = fwrite (fid, data, precision, skip, arch)
Write data in binary form of type precision to the specified file ID fid,
returning the number of values successfully written to the file.
The argument data is a matrix of values that are to be written to the
file. The values are extracted in column-major order.
The remaining arguments precision, skip, and arch are optional, and
are interpreted as described for fread.
The behavior of fwrite is undefined if the values in data are too large
to fit in the specified precision.

13.2.17 Temporary Files

Built-in Functiontmpnam ()
Return a unique temporary file name as a string.
Since the named file is not opened, by tmpnam, it is possible (though
relatively unlikely) that it will not be available by the time your pro-
gram attempts to open it.

13.2.18 End of File and Errors

Built-in Functionfeof (fid)
Return 1 if an end-of-file condition has been encountered for a given
file and 0 otherwise. Note that it will only return 1 if the end of the
file has already been encountered, not if the next read operation will
result in an end-of-file condition.

Built-in Functionferror (fid)
Return 1 if an error condition has been encountered for a given file and
0 otherwise. Note that it will only return 1 if an error has already been
encountered, not if the next operation will result in an error condition.

146 GNU Octave

Built-in Functionfreport ()
Print a list of which files have been opened, and whether they are open
for reading, writing, or both. For example,

freport ()

� number mode name
�
� 0 r stdin
� 1 w stdout
� 2 w stderr
� 3 r myfile

13.2.19 File Positioning

Three functions are available for setting and determining the position
of the file pointer for a given file.

Built-in Functionftell (fid)
Return the position of the file pointer as the number of characters from
the beginning of the file fid.

Built-in Functionfseek (fid, offset, origin)
Set the file pointer to any location within the file fid. The pointer
is positioned offset characters from the origin, which may be one of
the predefined variables SEEK_CUR (current position), SEEK_SET (be-
ginning), or SEEK_END (end of file). If origin is omitted, SEEK_SET is
assumed. The offset must be zero, or a value returned by ftell (in
which case origin must be SEEK_SET.

Built-in VariableSEEK SET
Built-in VariableSEEK CUR
Built-in VariableSEEK END

These variables may be used as the optional third argument for the
function fseek.

Built-in Functionfrewind (fid)
Move the file pointer to the beginning of the file fid, returning 1 for
success, and 0 if an error was encountered. It is equivalent to fseek
(fid, 0, SEEK_SET).

The following example stores the current file position in the variable
marker, moves the pointer to the beginning of the file, reads four charac-
ters, and then returns to the original position.

Chapter 13: Input and Output 147

marker = ftell (myfile);
frewind (myfile);
fourch = fgets (myfile, 4);
fseek (myfile, marker, SEEK_SET);

148 GNU Octave

Chapter 14: Plotting 149

14 Plotting

All of Octave’s plotting functions use gnuplot to handle the actual
graphics. There are two low-level functions, gplot and gsplot, that
behave almost exactly like the corresponding gnuplot functions plot and
splot. A number of other higher level plotting functions, patterned after
the graphics functions found in Matlab version 3.5, are also available.
These higher level functions are all implemented in terms of the two low-
level plotting functions.

14.1 Two-Dimensional Plotting

Commandgplot ranges expression using title style
Generate a 2-dimensional plot.
The ranges, using, title, and style arguments are optional, and the
using, title and style qualifiers may appear in any order after the ex-
pression. You may plot multiple expressions with a single command
by separating them with commas. Each expression may have its own
set of qualifiers.
The optional item ranges has the syntax

[x_lo : x_up] [y_lo : y_up]

and may be used to specify the ranges for the axes of the plot, inde-
pendent of the actual range of the data. The range for the y axes and
any of the individual limits may be omitted. A range [:] indicates
that the default limits should be used. This normally means that a
range just large enough to include all the data points will be used.
The expression to be plotted must not contain any literal matrices (e.g.
[1, 2; 3, 4]) since it is nearly impossible to distinguish a plot range
from a matrix of data.
See the help for gnuplot for a description of the syntax for the optional
items.
By default, the gplot command plots the second column of a matrix
versus the first. If the matrix only has one column, it is taken as a
vector of y-coordinates and the x-coordinate is taken as the element
index, starting with zero. For example,

gplot rand (100,1) with linespoints

will plot 100 random values and connect them with lines.

150 GNU Octave

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

line 1

When gplot is used to plot a column vector, the indices of the elements
are taken as x values.
If there are more than two columns, you can choose which columns to
plot with the using qualifier. For example, given the data

x = (-10:0.1:10)’;
data = [x, sin(x), cos(x)];

the command
gplot [-11:11] [-1.1:1.1] \
data with lines, data using 1:3 with impulses

will plot two lines. The first line is generated by the command data
with lines, and is a graph of the sine function over the range −10 to
10. The data is taken from the first two columns of the matrix because
columns to plot were not specified with the using qualifier.

Chapter 14: Plotting 151

-1

-0.5

0

0.5

1

-10 -5 0 5 10

line 1
line 2

The clause using 1:3 in the second part of this plot command specifies
that the first and third columns of the matrix data should be taken
as the values to plot.
In this example, the ranges have been explicitly specified to be a bit
larger than the actual range of the data so that the curves do not touch
the border of the plot.

Commandgset options
Commandgshow options
Commandreplot options

In addition to the basic plotting commands, the whole range of gset
and gshow commands from gnuplot are available, as is replot.
Note that in Octave 2.0, the set and show commands were renamed to
gset and gshow in order to allow for compatibility with the Matlab
graphics and GUI commands in a future version of Octave. (For now,
the old set and show commands do work, but they print an annoying
warning message to try to get people to switch to using gset and
gshow.)
The gset and gshow commands allow you to set and show gnuplot
parameters. For more information about the gset and gshow com-
mands, see the documentation for set and show in the gnuplot user’s
guide (also available on line if you run gnuplot directly, instead of
running it from Octave).
The replot command allows you to force the plot to be redisplayed.
This is useful if you have changed something about the plot, such as
the title or axis labels. The replot command also accepts the same
arguments as gplot or gsplot (except for data ranges) so you can add
additional lines to existing plots.

152 GNU Octave

For example,

gset term tek40
gset output "/dev/plotter"
gset title "sine with lines and cosine with impulses"
replot "sin (x) w l"

will change the terminal type for plotting, add a title to the current
plot, add a graph of sin(x) to the plot, and force the new plot to be
sent to the plot device. This last step is normally required in order
to update the plot. This default is reasonable for slow terminals or
hardcopy output devices because even when you are adding additional
lines with a replot command, gnuplot always redraws the entire plot,
and you probably don’t want to have a completely new plot generated
every time something as minor as an axis label changes.
The command shg is equivalent to executing replot without any ar-
guments.

Built-in Variableautomatic replot
You can tell Octave to redisplay the plot each time anything about it
changes by setting the value of the builtin variable automatic_replot
to a nonzero value. Since this is fairly inefficient, the default value is
0.

Note that NaN values in the plot data are automatically omitted, and
Inf values are converted to a very large value before calling gnuplot.

The Matlab-style two-dimensional plotting commands are:

Function Fileplot (args)
This function produces two-dimensional plots. Many different combi-
nations of arguments are possible. The simplest form is

plot (y)

where the argument is taken as the set of y coordinates and the x
coordinates are taken to be the indices of the elements, starting with
1.
If more than one argument is given, they are interpreted as

plot (x, y, fmt ...)

where y and fmt are optional, and any number of argument sets may
appear. The x and y values are interpreted as follows:

• If a single data argument is supplied, it is taken as the set of y
coordinates and the x coordinates are taken to be the indices of
the elements, starting with 1.

Chapter 14: Plotting 153

• If the first argument is a vector and the second is a matrix, the
the vector is plotted versus the columns (or rows) of the matrix.
(using whichever combination matches, with columns tried first.)

• If the first argument is a matrix and the second is a vector, the
the columns (or rows) of the matrix are plotted versus the vector.
(using whichever combination matches, with columns tried first.)

• If both arguments are vectors, the elements of y are plotted versus
the elements of x.

• If both arguments are matrices, the columns of y are plotted
versus the columns of x. In this case, both matrices must have
the same number of rows and columns and no attempt is made
to transpose the arguments to make the number of rows match.
If both arguments are scalars, a single point is plotted.

The fmt argument, if present is interpreted as follows. If fmt is missing,
the default gnuplot line style is assumed.

‘-’ Set lines plot style (default).

‘.’ Set dots plot style.

‘@’ Set points plot style.

‘-@’ Set linespoints plot style.

‘^’ Set impulses plot style.

‘L’ Set steps plot style.

‘#’ Set boxes plot style.

‘~’ Set errorbars plot style.

‘#~’ Set boxerrorbars plot style.

‘n’ Interpreted as the plot color if n is an integer in the range
1 to 6.

‘nm’ If nm is a two digit integer and m is an integer in the
range 1 to 6, m is interpreted as the point style. This is
only valid in combination with the @ or -@ specifiers.

‘c’ If c is one of "r", "g", "b", "m", "c", or "w", it is inter-
preted as the plot color (red, green, blue, magenta, cyan,
or white).

‘+’
‘*’
‘o’
‘x’ Used in combination with the points or linespoints styles,

set the point style.

154 GNU Octave

The color line styles have the following meanings on terminals that
support color.

Number Gnuplot colors (lines)points style
1 red *
2 green +
3 blue o
4 magenta x
5 cyan house
6 brown there exists

Here are some plot examples:
plot (x, y, "@12", x, y2, x, y3, "4", x, y4, "+")

This command will plot y with points of type 2 (displayed as ‘+’) and
color 1 (red), y2 with lines, y3 with lines of color 4 (magenta) and y4
with points displayed as ‘+’.

plot (b, "*")

This command will plot the data in the variable b will be plotted with
points displayed as ‘*’.

Function Filehold args
Tell Octave to ‘hold’ the current data on the plot when executing
subsequent plotting commands. This allows you to execute a series of
plot commands and have all the lines end up on the same figure. The
default is for each new plot command to clear the plot device first. For
example, the command

hold on

turns the hold state on. An argument of off turns the hold state off,
and hold with no arguments toggles the current hold state.

Function Fileishold
Return 1 if the next line will be added to the current plot, or 0 if the
plot device will be cleared before drawing the next line.

Function Fileclearplot
Function Fileclg

Clear the plot window and any titles or axis labels. The name clg is
aliased to clearplot for compatibility with Matlab.
The commands gplot clear, gsplot clear, and replot clear are
equivalent to clearplot. (Previously, commands like gplot clear

would evaluate clear as an ordinary expression and clear all the visible
variables.)

Chapter 14: Plotting 155

Function Filecloseplot
Close stream to the gnuplot subprocess. If you are using X11, this
will close the plot window.

Function Filepurge tmp files
Delete the temporary files created by the plotting commands.
Octave creates temporary data files for gnuplot and then sends com-
mands to gnuplot through a pipe. Octave will delete the temporary
files on exit, but if you are doing a lot of plotting you may want to
clean up in the middle of a session.
A future version of Octave will eliminate the need to use temporary
files to hold the plot data.

Function Fileaxis (limits)
Sets the axis limits for plots.
The argument limits should be a 2, 4, or 6 element vector. The first
and second elements specify the lower and upper limits for the x axis.
The third and fourth specify the limits for the y axis, and the fifth and
sixth specify the limits for the z axis.
With no arguments, axis turns autoscaling on.
If your plot is already drawn, then you need to use replot before the
new axis limits will take effect. You can get this to happen automati-
cally by setting the built-in variable automatic_replot to a nonzero
value.

14.2 Specialized Two-Dimensional Plots

Function Filebar (x, y)
Given two vectors of x-y data, bar produces a bar graph.
If only one argument is given, it is taken as a vector of y-values and
the x coordinates are taken to be the indices of the elements.
If two output arguments are specified, the data are generated but not
plotted. For example,

bar (x, y);

and

[xb, yb] = bar (x, y);
plot (xb, yb);

are equivalent.

156 GNU Octave

Function Filecontour (z, n, x, y)
Make a contour plot of the three-dimensional surface described by z.
Someone needs to improve gnuplot’s contour routines before this will
be very useful.

Function Filehist (y, x)
Produce histogram counts or plots.
With one vector input argument, plot a histogram of the values with
10 bins. The range of the histogram bins is determined by the range
of the data.
Given a second scalar argument, use that as the number of bins.
Given a second vector argument, use that as the centers of the bins,
with the width of the bins determined from the adjacent values in the
vector.
Extreme values are lumped in the first and last bins.
With two output arguments, produce the values nn and xx such that
bar (xx, nn) will plot the histogram.

Function Fileloglog (args)
Make a two-dimensional plot using log scales for both axes. See the de-
scription of plot above for a description of the arguments that loglog
will accept.

Function Filepolar (theta, rho)
Make a two-dimensional plot given polar the coordinates theta and
rho.

Function Filesemilogx (args)
Make a two-dimensional plot using a log scale for the x axis. See
the description of plot above for a description of the arguments that
semilogx will accept.

Function Filesemilogy (args)
Make a two-dimensional plot using a log scale for the y axis. See
the description of plot above for a description of the arguments that
semilogy will accept.

Function Filestairs (x, y)
Given two vectors of x-y data, bar produces a ‘stairstep’ plot.
If only one argument is given, it is taken as a vector of y-values and
the x coordinates are taken to be the indices of the elements.
If two output arguments are specified, the data are generated but not
plotted. For example,

Chapter 14: Plotting 157

stairs (x, y);

and

[xs, ys] = stairs (x, y);
plot (xs, ys);

are equivalent.

14.3 Three-Dimensional Plotting

Commandgsplot ranges expression using title style
Generate a 3-dimensional plot.

The ranges, using, title, and style arguments are optional, and the
using, title and style qualifiers may appear in any order after the ex-
pression. You may plot multiple expressions with a single command
by separating them with commas. Each expression may have its own
set of qualifiers.

The optional item ranges has the syntax

[x_lo : x_up] [y_lo : y_up] [z_lo : z_up]

and may be used to specify the ranges for the axes of the plot, inde-
pendent of the actual range of the data. The range for the y and z
axes and any of the individual limits may be omitted. A range [:]
indicates that the default limits should be used. This normally means
that a range just large enough to include all the data points will be
used.

The expression to be plotted must not contain any literal matrices (e.g.
[1, 2; 3, 4]) since it is nearly impossible to distinguish a plot range
from a matrix of data.

See the help for gnuplot for a description of the syntax for the optional
items.

By default, the gsplot command plots each column of the expression
as the z value, using the row index as the x value, and the column
index as the y value. The indices are counted from zero, not one. For
example,

gsplot rand (5, 2)

158 GNU Octave

will plot a random surface, with the x and y values taken from the row
and column indices of the matrix.

line 1

0 0.5 1 1.5 2 2.5 3 3.5 4 0

0.2

0.4

0.6

0.8

1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

If parametric plotting mode is set (using the command gset

parametric, then gsplot takes the columns of the matrix three at a
time as the x, y and z values that define a line in three space. Any
extra columns are ignored, and the x and y values are expected to be
sorted. For example, with parametric set, it makes sense to plot a
matrix like

 1 1 3 2 1 6 3 1 9
1 2 2 2 2 5 3 2 8
1 3 1 2 3 4 3 3 7

but not rand (5, 30).

The Matlab-style three-dimensional plotting commands are:

Function Filemesh (x, y, z)
Plot a mesh given matrices x, and y from meshdom and a matrix z
corresponding to the x and y coordinates of the mesh.

Function Filemeshdom (x, y)
Given vectors of x and y coordinates, return two matrices correspond-
ing to the x and y coordinates of the mesh.
See the file ‘sombrero.m’ for an example of using mesh and meshdom.

Built-in Variablegnuplot binary
The name of the program invoked by the plot command. The default
value is "gnuplot". See Appendix C [Installation], page 259.

Chapter 14: Plotting 159

Built-in Variablegnuplot has frames
If the value of this variable is nonzero, Octave assumes that your copy
of gnuplot has support for multiple frames that is included in recent
3.6beta releases. It’s initial value is determined by configure, but it
can be changed in your startup script or at the command line in case
configure got it wrong, or if you upgrade your gnuplot installation.

Function Filefigure (n)
Set the current plot window to plot window n. This function currently
requires X11 and a version of gnuplot that supports multiple frames.

Built-in Variablegnuplot has multiplot
If the value of this variable is nonzero, Octave assumes that your copy
of gnuplot has the multiplot support that is included in recent 3.6beta
releases. It’s initial value is determined by configure, but it can be
changed in your startup script or at the command line in case configure
got it wrong, or if you upgrade your gnuplot installation.

14.4 Plot Annotations

Function Filegrid
For two-dimensional plotting, force the display of a grid on the plot.

Function Filetitle (string)
Specify a title for the plot. If you already have a plot displayed, use
the command replot to redisplay it with the new title.

Function Filexlabel (string)
Function Fileylabel (string)
Function Filezlabel (string)

Specify x, y, and z axis labels for the plot. If you already have a plot
displayed, use the command replot to redisplay it with the new labels.

14.5 Multiple Plots on One Page

The following functions all require a version of gnuplot that supports
the multiplot feature.

Function Filemplot (x, y)
Function Filemplot (x, y, fmt)
Function Filemplot (x1, y1, x2, y2)

This is a modified version of the plot function that works with the
multiplot version of gnuplot to plot multiple plots per page. This plot

160 GNU Octave

version automatically advances to the next subplot position after each
set of arguments are processed.
See the description of the plot function for the various options.

Function Filemultiplot (xn, yn)
Sets and resets multiplot mode.
If the arguments are non-zero, multiplot will set up multiplot mode
with xn, yn subplots along the x and y axes. If both arguments are
zero, multiplot closes multiplot mode.

Function Fileoneplot ()
If in multiplot mode, switches to single plot mode.

Function Fileplot border (...)
Multiple arguments allowed to specify the sides on which the border
is shown. Allowed arguments include:

"blank" No borders displayed.

"all" All borders displayed

"north" North Border

"south" South Border

"east" East Border

"west" West Border

The arguments may be abbreviated to single characters. Without any
arguments, plot_border turns borders off.

Function Filesubplot (rows, cols, index)
Function Filesubplot (rcn)

Sets gnuplot in multiplot mode and plots in location given by index
(there are cols by rows subwindows).
Input:

rows Number of rows in subplot grid.

columns Number of columns in subplot grid.

index Index of subplot where to make the next plot.

If only one argument is supplied, then it must be a three digit value
specifying the location in digits 1 (rows) and 2 (columns) and the plot
index in digit 3.
The plot index runs row-wise. First all the columns in a row are filled
and then the next row is filled.

Chapter 14: Plotting 161

For example, a plot with 4 by 2 grid will have plot indices running as
follows:

1 2 3 4

5 6 7 8

Function Filesubwindow (xn, yn)
Sets the subwindow position in multiplot mode for the next plot. The
multiplot mode has to be previously initialized using the multiplot
function, otherwise this command just becomes an alias to multiplot

Function Filetop title (string)
Function Filebottom title (string)

Makes a title with text string at the top (bottom) of the plot.

162 GNU Octave

Chapter 15: Matrix Manipulation 163

15 Matrix Manipulation

There are a number of functions available for checking to see if the ele-
ments of a matrix meet some condition, and for rearranging the elements
of a matrix. For example, Octave can easily tell you if all the elements of
a matrix are finite, or are less than some specified value. Octave can also
rotate the elements, extract the upper- or lower-triangular parts, or sort
the columns of a matrix.

15.1 Finding Elements and Checking
Conditions

The functions any and all are useful for determining whether any or
all of the elements of a matrix satisfy some condition. The find function
is also useful in determining which elements of a matrix meet a specified
condition.

Built-in Functionany (x)
For a vector argument, return 1 if any element of the vector is nonzero.
For a matrix argument, return a row vector of ones and zeros with each
element indicating whether any of the elements of the corresponding
column of the matrix are nonzero. For example,

any (eye (2, 4))
⇒ [1, 1, 0, 0]

To see if any of the elements of a matrix are nonzero, you can use a
statement like

any (any (a))

Built-in Functionall (x)
The function all behaves like the function any, except that it returns
true only if all the elements of a vector, or all the elements in a column
of a matrix, are nonzero.

Since the comparison operators (see Section 8.4 [Comparison Ops],
page 78) return matrices of ones and zeros, it is easy to test a matrix for
many things, not just whether the elements are nonzero. For example,

all (all (rand (5) < 0.9))
⇒ 0

tests a random 5 by 5 matrix to see if all of its elements are less than 0.9.
Note that in conditional contexts (like the test clause of if and

while statements) Octave treats the test as if you had typed all (all
(condition)).

164 GNU Octave

Function File[err, y1, ...] = common size (x1, ...)
Determine if all input arguments are either scalar or of common size.
If so, err is zero, and yi is a matrix of the common size with all entries
equal to xi if this is a scalar or xi otherwise. If the inputs cannot be
brought to a common size, errorcode is 1, and yi is xi. For example,

[errorcode, a, b] = common_size ([1 2; 3 4], 5)
⇒ errorcode = 0
⇒ a = [1, 2; 3, 4]
⇒ b = [5, 5; 5, 5]

This is useful for implementing functions where arguments can either
be scalars or of common size.

Function Filediff (x, k)
If x is a vector of length n, diff (x) is the vector of first differences
x2 − x1, . . . , xn − xn−1.
If x is a matrix, diff (x) is the matrix of column differences.
The second argument is optional. If supplied, diff (x, k), where k
is a nonnegative integer, returns the k-th differences.

Mapping Functionisinf (x)
Return 1 for elements of x that are infinite and zero otherwise. For
example,

isinf ([13, Inf, NaN])
⇒ [0, 1, 0]

Mapping Functionisnan (x)
Return 1 for elements of x that are NaN values and zero otherwise.
For example,

isnan ([13, Inf, NaN])
⇒ [0, 0, 1]

Mapping Functionfinite (x)
Return 1 for elements of x that are NaN values and zero otherwise.
For example,

finite ([13, Inf, NaN])
⇒ [1, 0, 0]

Loadable Functionfind (x)
Return a vector of indices of nonzero elements of a matrix. To obtain a
single index for each matrix element, Octave pretends that the columns
of a matrix form one long vector (like Fortran arrays are stored). For
example,

Chapter 15: Matrix Manipulation 165

find (eye (2))
⇒ [1; 4]

If two outputs are requested, find returns the row and column indices
of nonzero elements of a matrix. For example,

[i, j] = find (2 * eye (2))
⇒ i = [1; 2]
⇒ j = [1; 2]

If three outputs are requested, find also returns a vector containing
the nonzero values. For example,

[i, j, v] = find (3 * eye (2))
⇒ i = [1; 2]
⇒ j = [1; 2]
⇒ v = [3; 3]

15.2 Rearranging Matrices

Function Filefliplr (x)
Return a copy of x with the order of the columns reversed. For exam-
ple,

fliplr ([1, 2; 3, 4])
⇒ 2 1

4 3

Function Fileflipud (x)
Return a copy of x with the order of the rows reversed. For example,

flipud ([1, 2; 3, 4])
⇒ 3 4

1 2

Function Filerot90 (x, n)
Return a copy of x with the elements rotated counterclockwise in 90-
degree increments. The second argument is optional, and specifies
how many 90-degree rotations are to be applied (the default value is
1). Negative values of n rotate the matrix in a clockwise direction. For
example,

rot90 ([1, 2; 3, 4], -1)
⇒ 3 1

4 2

rotates the given matrix clockwise by 90 degrees. The following are all
equivalent statements:

166 GNU Octave

rot90 ([1, 2; 3, 4], -1)
≡
rot90 ([1, 2; 3, 4], 3)
≡
rot90 ([1, 2; 3, 4], 7)

Function Filereshape (a, m, n)
Return a matrix with m rows and n columns whose elements are taken
from the matrix a. To decide how to order the elements, Octave pre-
tends that the elements of a matrix are stored in column-major order
(like Fortran arrays are stored).
For example,

reshape ([1, 2, 3, 4], 2, 2)
⇒ 1 3

2 4

If the variable do_fortran_indexing is nonzero, the reshape function
is equivalent to

retval = zeros (m, n);
retval (:) = a;

but it is somewhat less cryptic to use reshape instead of the colon
operator. Note that the total number of elements in the original matrix
must match the total number of elements in the new matrix.

Function Fileshift (x, b)
If x is a vector, perform a circular shift of length b of the elements of
x.
If x is a matrix, do the same for each column of x.

Loadable Function[s, i] = sort (x)
Return a copy of x with the elements elements arranged in increasing
order. For matrices, sort orders the elements in each column.
For example,

sort ([1, 2; 2, 3; 3, 1])
⇒ 1 1

2 2
3 3

The sort function may also be used to produce a matrix containing the
original row indices of the elements in the sorted matrix. For example,

[s, i] = sort ([1, 2; 2, 3; 3, 1])
⇒ s = 1 1

2 2

Chapter 15: Matrix Manipulation 167

3 3
⇒ i = 1 3

2 1
3 2

Since the sort function does not allow sort keys to be specified, it
can’t be used to order the rows of a matrix according to the values of the
elements in various columns1 in a single call. Using the second output,
however, it is possible to sort all rows based on the values in a given
column. Here’s an example that sorts the rows of a matrix based on the
values in the second column.

a = [1, 2; 2, 3; 3, 1];
[s, i] = sort (a (:, 2));
a (i, :)

⇒ 3 1
1 2
2 3

Function Filetril (a, k)
Function Filetriu (a, k)

Return a new matrix formed by extracting extract the lower (tril)
or upper (triu) triangular part of the matrix a, and setting all other
elements to zero. The second argument is optional, and specifies how
many diagonals above or below the main diagonal should also be set
to zero.
The default value of k is zero, so that triu and tril normally include
the main diagonal as part of the result matrix.
If the value of k is negative, additional elements above (for tril) or
below (for triu) the main diagonal are also selected.
The absolute value of k must not be greater than the number of sub-
or super-diagonals.
For example,

tril (ones (3), -1)
⇒ 0 0 0

1 0 0
1 1 0

and
tril (ones (3), 1)

1 For example, to first sort based on the values in column 1, and then, for
any values that are repeated in column 1, sort based on the values found in
column 2, etc.

168 GNU Octave

⇒ 1 1 0
1 1 1
1 1 1

Function Filevec (x)
Return the vector obtained by stacking the columns of the matrix x
one above the other.

Function Filevech (x)
Return the vector obtained by eliminating all supradiagonal elements
of the square matrix x and stacking the result one column above the
other.

15.3 Special Utility Matrices

Built-in Functioneye (x)
Built-in Functioneye (n, m)

Return an identity matrix. If invoked with a single scalar argument,
eye returns a square matrix with the dimension specified. If you supply
two scalar arguments, eye takes them to be the number of rows and
columns. If given a vector with two elements, eye uses the values of
the elements as the number of rows and columns, respectively. For
example,

eye (3)
⇒ 1 0 0

0 1 0
0 0 1

The following expressions all produce the same result:
eye (2)
≡
eye (2, 2)
≡
eye (size ([1, 2; 3, 4])

For compatibility with Matlab, calling eye with no arguments is
equivalent to calling it with an argument of 1.

Built-in Functionones (x)
Built-in Functionones (n, m)

Return a matrix whose elements are all 1. The arguments are handled
the same as the arguments for eye.

Chapter 15: Matrix Manipulation 169

If you need to create a matrix whose values are all the same, you should
use an expression like

val_matrix = val * ones (n, m)

Built-in Functionzeros (x)
Built-in Functionzeros (n, m)

Return a matrix whose elements are all 0. The arguments are handled
the same as the arguments for eye.

Loadable Functionrand (x)
Loadable Functionrand (n, m)
Loadable Functionrand ("seed", x)

Return a matrix with random elements uniformly distributed on the
interval (0, 1). The arguments are handled the same as the arguments
for eye. In addition, you can set the seed for the random number
generator using the form

rand ("seed", x)

where x is a scalar value. If called as
rand ("seed")

rand returns the current value of the seed.

Loadable Functionrandn (x)
Loadable Functionrandn (n, m)
Loadable Functionrandn ("seed", x)

Return a matrix with normally distributed random elements. The
arguments are handled the same as the arguments for eye. In addition,
you can set the seed for the random number generator using the form

randn ("seed", x)

where x is a scalar value. If called as
randn ("seed")

randn returns the current value of the seed.

The rand and randn functions use separate generators. This ensures
that

rand ("seed", 13);
randn ("seed", 13);
u = rand (100, 1);
n = randn (100, 1);

and
rand ("seed", 13);
randn ("seed", 13);

170 GNU Octave

u = zeros (100, 1);
n = zeros (100, 1);
for i = 1:100
u(i) = rand ();
n(i) = randn ();

end

produce equivalent results.
Normally, rand and randn obtain their initial seeds from the system

clock, so that the sequence of random numbers is not the same each time
you run Octave. If you really do need for to reproduce a sequence of
numbers exactly, you can set the seed to a specific value.

If it is invoked without arguments, rand and randn return a single
element of a random sequence.

The rand and randn functions use Fortran code from Ranlib, a library
of fortran routines for random number generation, compiled by Barry W.
Brown and James Lovato of the Department of Biomathematics at The
University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030.

Built-in Functiondiag (v, k)
Return a diagonal matrix with vector v on diagonal k. The second
argument is optional. If it is positive, the vector is placed on the k-th
super-diagonal. If it is negative, it is placed on the -k-th sub-diagonal.
The default value of k is 0, and the vector is placed on the main
diagonal. For example,

diag ([1, 2, 3], 1)
⇒ 0 1 0 0

0 0 2 0
0 0 0 3
0 0 0 0

The functions linspace and logspace make it very easy to create
vectors with evenly or logarithmically spaced elements. See Section 4.2
[Ranges], page 45.

Function Filelinspace (base, limit, n)
Return a row vector with n linearly spaced elements between base and
limit. The number of elements, n, must be greater than 1. The base
and limit are always included in the range. If base is greater than
limit, the elements are stored in decreasing order. If the number of
points is not specified, a value of 100 is used.
The linspace function always returns a row vector, regardless of the
value of prefer_column_vectors.

Chapter 15: Matrix Manipulation 171

Function Filelogspace (base, limit, n)
Similar to linspace except that the values are logarithmically spaced
from 10base to 10limit.
If limit is equal to π, the points are between 10base and π, not 10base

and 10π, in order to be compatible with the corresponding Matlab
function.

Built-in Variabletreat neg dim as zero
If the value of treat_neg_dim_as_zero is nonzero, expressions like

eye (-1)

produce an empty matrix (i.e., row and column dimensions are zero).
Otherwise, an error message is printed and control is returned to the
top level. The default value is 0.

15.4 Famous Matrices

The following functions return famous matrix forms.

Function Filehankel (c, r)
Return the Hankel matrix constructed given the first column c, and
(optionally) the last row r. If the last element of c is not the same
as the first element of r, the last element of c is used. If the second
argument is omitted, the last row is taken to be the same as the first
column.
A Hankel matrix formed from an m-vector c, and an n-vector r, has
the elements

H(i, j) =
{
ci+j−1, i+ j − 1 ≤ m;
ri+j−m, otherwise.

Function Filehilb (n)
Return the Hilbert matrix of order n. The i, j element of a Hilbert
matrix is defined as

H(i, j) =
1

(i+ j − 1)

Function Fileinvhilb (n)
Return the inverse of a Hilbert matrix of order n. This is exact. Com-
pare with the numerical calculation of inverse (hilb (n)), which
suffers from the ill-conditioning of the Hilbert matrix, and the finite
precision of your computer’s floating point arithmetic.

172 GNU Octave

Function Filesylvester matrix (k)
Return the Sylvester matrix of order n = 2k.

Function Filetoeplitz (c, r)
Return the Toeplitz matrix constructed given the first column c, and
(optionally) the first row r. If the first element of c is not the same
as the first element of r, the first element of c is used. If the second
argument is omitted, the first row is taken to be the same as the first
column.
A square Toeplitz matrix has the form

c0 r1 r2 . . . rn
c1 c0 r1 cn−1

c2 c1 c0 cn−2

...
...

cn cn−1 cn−2 . . . c0

 .

Function Filevander (c)
Return the Vandermonde matrix whose next to last column is c.
A Vandermonde matrix has the form

cn0 . . . c20 c0 1
cn1 . . . c21 c1 1
...

...
...

...
cnn . . . c2n cn 1

 .

Chapter 16: Arithmetic 173

16 Arithmetic

Unless otherwise noted, all of the functions described in this chapter
will work for real and complex scalar or matrix arguments.

16.1 Utility Functions

The following functions are available for working with complex num-
bers. Each expects a single argument. They are called mapping functions
because when given a matrix argument, they apply the given function to
each element of the matrix.

Mapping Functionceil (x)
Return the smallest integer not less than x. If x is complex, return
ceil (real (x)) + ceil (imag (x)) * I.

Mapping Functionexp (x)
Compute the exponential of x. To compute the matrix exponential,
see Chapter 17 [Linear Algebra], page 183.

Mapping Functionfix (x)
Truncate x toward zero. If x is complex, return fix (real (x)) + fix
(imag (x)) * I.

Mapping Functionfloor (x)
Return the largest integer not greater than x. If x is complex, return
floor (real (x)) + floor (imag (x)) * I.

Mapping Functiongcd (x, ...)
Compute the greatest common divisor of the elements of x, or the list
of all the arguments. For example,

gcd (a1, ..., ak)

is the same as
gcd ([a1, ..., ak])

An optional second return value, v contains an integer vector such that
g = v(1) * a(k) + ... + v(k) * a(k)

Mapping Functionlcm (x, ...)
Compute the least common multiple of the elements elements of x, or
the list of all the arguments. For example,

174 GNU Octave

lcm (a1, ..., ak)

is the same as
lcm ([a1, ..., ak]).

Mapping Functionlog (x)
Compute the natural logarithm of x. To compute the matrix loga-
rithm, see Chapter 17 [Linear Algebra], page 183.

Mapping Functionlog10 (x)
Compute the base-10 logarithm of x.

Mapping Functiony = log2 (x)
Mapping Function[f, e] log2 (x)

Compute the base-2 logarithm of x. With two outputs, returns f and
e such that 1/2 <= |f | < 1 and x = f · 2e.

Loadable Functionmax (x)
For a vector argument, return the maximum value. For a matrix argu-
ment, return the maximum value from each column, as a row vector.
Thus,

max (max (x))

returns the largest element of x.
For complex arguments, the magnitude of the elements are used for
comparison.

Loadable Functionmin (x)
Like max, but return the minimum value.

Function Filenextpow2 (x)
If x is a scalar, returns the first integer n such that 2n ≥ |x|.
If x is a vector, return nextpow2 (length (x)).

Mapping Functionpow2 (x)
Mapping Functionpow2 (f, e)

With one argument, computes 2x for each element of x. With two
arguments, returns f · 2e.

Mapping Functionrem (x, y)
Return the remainder of x / y , computed using the expression

x - y .* fix (x ./ y)

An error message is printed if the dimensions of the arguments do not
agree, or if either of the arguments is complex.

Chapter 16: Arithmetic 175

Mapping Functionround (x)
Return the integer nearest to x. If x is complex, return round (real
(x)) + round (imag (x)) * I.

Mapping Functionsign (x)
Compute the signum function, which is defined as

sign(x) =

{ 1, x > 0;
0, x = 0;
−1, x < 0.

For complex arguments, sign returns x ./ abs (x).

Mapping Functionsqrt (x)
Compute the square root of x. If x is negative, a complex result is
returned. To compute the matrix square root, see Chapter 17 [Linear
Algebra], page 183.

Mapping Functionxor (x, y)
Return the ‘exclusive or’ of the entries of x and y. For boolean expres-
sions x and y, xor (x, y) is true if and only if x or y is true, but not
if both x and y are true.

16.2 Complex Arithmetic

The following functions are available for working with complex num-
bers. Each expects a single argument. Given a matrix they work on an
element by element basis. In the descriptions of the following functions,
z is the complex number x+ iy, where i is defined as

√−1.

Mapping Functionabs (z)

Compute the magnitude of z, defined as |z| =
√
x2 + y2.

For example,
abs (3 + 4i)

⇒ 5

Mapping Functionarg (z)
Mapping Functionangle (z)

Compute the argument of z, defined as θ = tan−1(y/x).
in radians.
For example,

arg (3 + 4i)
⇒ 0.92730

176 GNU Octave

Mapping Functionconj (z)
Return the complex conjugate of z, defined as z̄ = x− iy.

Mapping Functionimag (z)
Return the imaginary part of z as a real number.

Mapping Functionreal (z)
Return the real part of z.

16.3 Trigonometry

Octave provides the following trigonometric functions. Angles are
specified in radians. To convert from degrees to radians multipy by π/180
(e.g. sin (30 * pi/180) returns the sine of 30 degrees).

Mapping Functionsin (z)
Mapping Functioncos (z)
Mapping Functiontan (z)
Mapping Functionsec (z)
Mapping Functioncsc (z)
Mapping Functioncot (z)

The ordinary trigonometric functions.

Mapping Functionasin (z)
Mapping Functionacos (z)
Mapping Functionatan (z)
Mapping Functionasec (z)
Mapping Functionacsc (z)
Mapping Functionacot (z)

The ordinary inverse trigonometric functions.

Mapping Functionsinh (z)
Mapping Functioncosh (z)
Mapping Functiontanh (z)
Mapping Functionsech (z)
Mapping Functioncsch (z)
Mapping Functioncoth (z)

Hyperbolic trigonometric functions.

Chapter 16: Arithmetic 177

Mapping Functionasinh (z)
Mapping Functionacosh (z)
Mapping Functionatanh (z)
Mapping Functionasech (z)
Mapping Functionacsch (z)
Mapping Functionacoth (z)

Inverse hyperbolic trigonometric functions.

Each of these functions expect a single argument. For matrix argu-
ments, they work on an element by element basis. For example,

sin ([1, 2; 3, 4])
⇒ 0.84147 0.90930

0.14112 -0.75680

Mapping Functionatan2 (y, x)
Return the arctangent of y/x. The signs of the arguments are used to
determine the quadrant of the result, which is in the range π to −π.

16.4 Sums and Products

Built-in Functionsum (x)
For a vector argument, return the sum of all the elements. For a matrix
argument, return the sum of the elements in each column, as a row
vector. The sum of an empty matrix is 0 if it has no columns, or a
vector of zeros if it has no rows (see Section 4.1.1 [Empty Matrices],
page 43).

Built-in Functionprod (x)
For a vector argument, return the product of all the elements. For a
matrix argument, return the product of the elements in each column,
as a row vector. The product of an empty matrix is 1 if it has no
columns, or a vector of ones if it has no rows (see Section 4.1.1 [Empty
Matrices], page 43).

Built-in Functioncumsum (x)
Return the cumulative sum of each column of x. For example,

cumsum ([1, 2; 3, 4])
⇒ 1 2

4 6

Built-in Functioncumprod (x)
Return the cumulative product of each column of x. For example,

178 GNU Octave

cumprod ([1, 2; 3, 4])
⇒ 1 2

3 8

Built-in Functionsumsq (x)
For a vector argument, return the sum of the squares of all the ele-
ments. For a matrix argument, return the sum of the squares of the
elements in each column, as a row vector.

16.5 Special Functions

Mapping Functionbesseli (alpha, x)
Mapping Functionbesselj (alpha, x)
Mapping Functionbesselk (alpha, x)
Mapping Functionbessely (alpha, x)

Compute Bessel functions of the following types:

besselj Bessel functions of the first kind.

bessely Bessel functions of the second kind.

besseli Modified Bessel functions of the first kind.

besselk Modified Bessel functions of the second kind.

The second argument, x, must be a real matrix, vector, or scalar.
The first argument, alpha, must be greater than or equal to zero. If
alpha is a range, it must have an increment equal to one.
If alpha is a scalar, the result is the same size as x.
If alpha is a range, x must be a vector or scalar, and the result is a
matrix with length(x) rows and length(alpha) columns.

Mapping Functionbeta (a, b)
Return the Beta function,

B(a, b) =
Γ(a)Γ(b)
Γ(a+ b)

.

Mapping Functionbetai (a, b, x)
Return the incomplete Beta function,

β(a, b, x) = B(a, b)−1

∫ x

0

t(a−z)(1− t)(b−1)dt.

If x has more than one component, both a and b must be scalars. If x
is a scalar, a and b must be of compatible dimensions.

Chapter 16: Arithmetic 179

Mapping Functionbincoeff (n, k)
Return the binomial coefficient of n and k, defined as(

n

k

)
=
n(n− 1)(n− 2) · · · (n− k + 1)

k!

For example,
bincoeff (5, 2)

⇒ 10

Mapping Functionerf (z)
Computes the error function,

erf(z) =
2√
π

∫ z

0

e−t2dt

Mapping Functionerfc (z)
Computes the complementary error function, 1− erf(z).

Mapping Functionerfinv (z)
Computes the inverse of the error function,

Mapping Functiongamma (z)
Computes the Gamma function,

Γ(z) =
∫ ∞

0

tz−1e−tdt.

Mapping Functiongammai (a, x)
Computes the incomplete gamma function,

γ(a, x) =

∫ x

0

e−tta−1dt

Γ(a)

If a is scalar, then gammai (a, x) is returned for each element of x
and vice versa.
If neither a nor x is scalar, the sizes of a and x must agree, and gammai
is applied element-by-element.

Mapping Functionlgamma (a, x)
Mapping Functiongammaln (a, x)

Return the natural logarithm of the gamma function.

180 GNU Octave

Function Filecross (x, y)
Computes the vector cross product of the two 3-dimensional vectors x
and y. For example,

cross ([1,1,0], [0,1,1])
⇒ [1; -1; 1]

Function Filecommutation matrix (m, n)
Return the commutation matrix Km,n which is the unique mn ×mn
matrix such that Km,n · vec(A) = vec(AT) for all m× n matrices A.
If only one argument m is given, Km,m is returned.
See Magnus and Neudecker (1988), Matrix differential calculus with
applications in statistics and econometrics.

Function Fileduplication matrix (n)
Return the duplication matrix Dn which is the unique n2 × n(n +
1)/2 matrix such that Dn ∗ vech(A) = vec(A) for all symmetric n× n
matrices A.
See Magnus and Neudecker (1988), Matrix differential calculus with
applications in statistics and econometrics.

16.6 Mathematical Constants

Built-in VariableI
Built-in VariableJ
Built-in Variablei
Built-in Variablej

A pure imaginary number, defined as
√−1. The I and J forms are

true constants, and cannot be modified. The i and j forms are like
ordinary variables, and may be used for other purposes. However,
unlike other variables, they once again assume their special predefined
values if they are cleared See Section 7.2 [Status of Variables], page 61.

Built-in VariableInf
Built-in Variableinf

Infinity. This is the result of an operation like 1/0, or an operation
that results in a floating point overflow.

Built-in VariableNaN
Built-in Variablenan

Not a number. This is the result of an operation like 0/0, or ∞−∞,
or any operation with a NaN.

Chapter 16: Arithmetic 181

Note that NaN always compares not equal to NaN. This behavior is
specified by the IEEE standard for floating point arithmetic. To find
NaN values, you must use the isnan function.

Built-in Variablepi
The ratio of the circumference of a circle to its diameter. Internally,
pi is computed as ‘4.0 * atan (1.0)’.

Built-in Variablee
The base of natural logarithms. The constant e satisfies the equation
log(e) = 1.

Built-in Variableeps
The machine precision. More precisely, eps is the largest relative spac-
ing between any two adjacent numbers in the machine’s floating point
system. This number is obviously system-dependent. On machines
that support 64 bit IEEE floating point arithmetic, eps is approxi-
mately 2.2204× 10−16.

Built-in Variablerealmax
The largest floating point number that is representable. The actual
value is system-dependent. On machines that support 64 bit IEEE
floating point arithmetic, realmax is approximately 1.7977× 10308.

Built-in Variablerealmin
The smallest floating point number that is representable. The actual
value is system-dependent. On machines that support 64 bit IEEE
floating point arithmetic, realmin is approximately 2.2251× 10−308.

182 GNU Octave

Chapter 17: Linear Algebra 183

17 Linear Algebra

This chapter documents the linear algebra functions of Octave. Ref-
erence material for many of these functions may be found in Golub and
Van Loan, Matrix Computations, 2nd Ed., Johns Hopkins, 1989, and in
Lapack Users’ Guide, SIAM, 1992.

17.1 Basic Matrix Functions

Loadable Functionaa = balance (a, opt)
Loadable Function[dd, aa] = balance (a, opt)
Loadable Function[cc, dd, aa, bb] = balance (a, b, opt)

[dd, aa] = balance (a) returns aa = dd \ a * dd. aa is a matrix
whose row and column norms are roughly equal in magnitude, and dd
= p * d, where p is a permutation matrix and d is a diagonal matrix of
powers of two. This allows the equilibration to be computed without
roundoff. Results of eigenvalue calculation are typically improved by
balancing first.
[cc, dd, aa, bb] = balance (a, b) returns aa = cc*a*dd and bb =
cc*b*dd), where aa and bb have non-zero elements of approximately
the same magnitude and cc and dd are permuted diagonal matrices as
in dd for the algebraic eigenvalue problem.
The eigenvalue balancing option opt is selected as follows:

"N", "n" No balancing; arguments copied, transformation(s) set to
identity.

"P", "p" Permute argument(s) to isolate eigenvalues where possi-
ble.

"S", "s" Scale to improve accuracy of computed eigenvalues.

"B", "b" Permute and scale, in that order. Rows/columns of a
(and b) that are isolated by permutation are not scaled.
This is the default behavior.

Algebraic eigenvalue balancing uses standard Lapack routines.
Generalized eigenvalue problem balancing uses Ward’s algorithm
(SIAM Journal on Scientific and Statistical Computing, 1981).

cond (a)
Compute the (two-norm) condition number of a matrix. cond (a) is
defined as norm (a) * norm (inv (a)), and is computed via a singular
value decomposition.

184 GNU Octave

Loadable Functiondet (a)
Compute the determinant of a using Linpack.

Loadable Functionlambda = eig (a)
Loadable Function[v, lambda] = eig (a)

The eigenvalues (and eigenvectors) of a matrix are computed in a
several step process which begins with a Hessenberg decomposition,
followed by a Schur decomposition, from which the eigenvalues are
apparent. The eigenvectors, when desired, are computed by further
manipulations of the Schur decomposition.

Loadable FunctionG = givens (x, y)
Loadable Function[c, s] = givens (x, y)

Return a 2× 2 orthogonal matrix

G =
[
c s

−s′ c

]

such that

G

[
x
y

]
=

[∗
0

]

with x and y scalars.
For example,

givens (1, 1)
⇒ 0.70711 0.70711

-0.70711 0.70711

Loadable Functioninv (a)
Loadable Functioninverse (a)

Compute the inverse of the square matrix a.

Function Filenorm (a, p)
Compute the p-norm of the matrix a. If the second argument is miss-
ing, p = 2 is assumed.
If a is a matrix:

p = 1 1-norm, the largest column sum of a.

p = 2 Largest singular value of a.

p = Inf Infinity norm, the largest row sum of a.

p = "fro" Frobenius norm of a, sqrt (sum (diag (a’ * a))).

If a is a vector or a scalar:

Chapter 17: Linear Algebra 185

p = Inf max (abs (a)).

p = -Inf min (abs (a)).

other p-norm of a, (sum (abs (a) .^ p)) ^ (1/p).

Function Filenull (a, tol)
Return an orthonormal basis of the null space of a.

The dimension of the null space is taken as the number of singular
values of a not greater than tol. If the argument tol is missing, it is
computed as

max (size (a)) * max (svd (a)) * eps

Function Fileorth (a, tol)
Return an orthonormal basis of the range space of a.

The dimension of the range space is taken as the number of singu-
lar values of a greater than tol. If the argument tol is missing, it is
computed as

max (size (a)) * max (svd (a)) * eps

Function Filepinv (x, tol)
Return the pseudoinverse of x. Singular values less than tol are ig-
nored.

If the second argument is omitted, it is assumed that

tol = max (size (x)) * sigma_max (x) * eps,

where sigma_max (x) is the maximal singular value of x.

Function Filerank (a, tol)
Compute the rank of a, using the singular value decomposition. The
rank is taken to be the number of singular values of a that are greater
than the specified tolerance tol. If the second argument is omitted, it
is taken to be

tol = max (size (a)) * sigma (1) * eps;

where eps is machine precision and sigma is the largest singular value
of a.

Function Filetrace (a)
Compute the trace of a, sum (diag (a)).

186 GNU Octave

17.2 Matrix Factorizations

Loadable Functionchol (a)
Compute the Cholesky factor, r, of the symmetric positive definite
matrix a, where RTR = A.

Loadable Functionh = hess (a)
Loadable Function[p, h] = hess (a)

Compute the Hessenberg decomposition of the matrix a.
The Hessenberg decomposition is usually used as the first step in an
eigenvalue computation, but has other applications as well (see Golub,
Nash, and Van Loan, IEEE Transactions on Automatic Control, 1979.
The Hessenberg decomposition is

A = PHPT

where P is a square unitary matrix (PHP = I), and H is upper
Hessenberg (Hi,j = 0,∀i ≥ j + 1).

Loadable Function[l, u, p] = lu (a)
Compute the LU decomposition of a, using subroutines from Lapack.
The result is returned in a permuted form, according to the optional
return value p. For example, given the matrix a = [1, 2; 3, 4],

[l, u, p] = lu (a)

returns
l =

1.00000 0.00000
0.33333 1.00000

u =

3.00000 4.00000
0.00000 0.66667

p =

0 1
1 0

Loadable Function[q, r, p] = qr (a)
Compute the QR factorization of a, using standard Lapack subrou-
tines. For example, given the matrix a = [1, 2; 3, 4],

Chapter 17: Linear Algebra 187

[q, r] = qr (a)

returns

q =

-0.31623 -0.94868
-0.94868 0.31623

r =

-3.16228 -4.42719
0.00000 -0.63246

The qr factorization has applications in the solution of least squares
problems

min
x

‖Ax− b‖2

for overdetermined systems of equations (i.e., A is a tall, thin matrix).
The QR factorization is QR = A where Q is an orthogonal matrix and
R is upper triangular.
The permuted QR factorization [q, r, p] = qr (a) forms the QR fac-
torization such that the diagonal entries of r are decreasing in magni-
tude order. For example, given the matrix a = [1, 2; 3, 4],

[q, r, pi] = qr(a)

returns

q =

-0.44721 -0.89443
-0.89443 0.44721

r =

-4.47214 -3.13050
0.00000 0.44721

p =

0 1
1 0

The permuted qr factorization [q, r, p] = qr (a) factorization allows
the construction of an orthogonal basis of span (a).

188 GNU Octave

Loadable Functions = schur (a)
Loadable Function[u, s] = schur (a, opt)

The Schur decomposition is used to compute eigenvalues of a square
matrix, and has applications in the solution of algebraic Riccati equa-
tions in control (see are and dare). schur always returns S = UTAU
where U is a unitary matrix (UTU is identity) and S is upper triangu-
lar. The eigenvalues of A (and S) are the diagonal elements of S If the
matrix A is real, then the real Schur decomposition is computed, in
which the matrix U is orthogonal and S is block upper triangular with
blocks of size at most 2 × 2 blocks along the diagonal. The diagonal
elements of S (or the eigenvalues of the 2×2 blocks, when appropriate)
are the eigenvalues of A and S.
The eigenvalues are optionally ordered along the diagonal according
to the value of opt. opt = "a" indicates that all eigenvalues with
negative real parts should be moved to the leading block of S (used
in are), opt = "d" indicates that all eigenvalues with magnitude less
than one should be moved to the leading block of S (used in dare),
and opt = "u", the default, indicates that no ordering of eigenvalues
should occur. The leading k columns of U always span the A-invariant
subspace corresponding to the k leading eigenvalues of S.

Loadable Functions = svd (a)
Loadable Function[u, s, v] = svd (a)

Compute the singular value decomposition of a

A = UΣV H

The function svd normally returns the vector of singular values. If
asked for three return values, it computes U , S, and V . For example,

svd (hilb (3))

returns
ans =

1.4083189
0.1223271
0.0026873

and
[u, s, v] = svd (hilb (3))

returns
u =

-0.82704 0.54745 0.12766

Chapter 17: Linear Algebra 189

-0.45986 -0.52829 -0.71375
-0.32330 -0.64901 0.68867

s =

1.40832 0.00000 0.00000
0.00000 0.12233 0.00000
0.00000 0.00000 0.00269

v =

-0.82704 0.54745 0.12766
-0.45986 -0.52829 -0.71375
-0.32330 -0.64901 0.68867

If given a second argument, svd returns an economy-sized decomposi-
tion, eliminating the unnecessary rows or columns of u or v.

17.3 Functions of a Matrix

Loadable Functionexpm (a)
Return the exponential of a matrix, defined as the infinite Taylor series

exp(A) = I +A+
A2

2!
+
A3

3!
+ · · ·

The Taylor series is not the way to compute the matrix exponential;
see Moler and Van Loan, Nineteen Dubious Ways to Compute the Ex-
ponential of a Matrix, SIAM Review, 1978. This routine uses Ward’s
diagonal Padé approximation method with three step preconditioning
(SIAM Journal on Numerical Analysis, 1977). Diagonal Padé approx-
imations are rational polynomials of matrices Dq(a)−1Nq(a) whose
Taylor series matches the first 2q+1 terms of the Taylor series above;
direct evaluation of the Taylor series (with the same preconditioning
steps) may be desirable in lieu of the Padé approximation when Dq(a)
is ill-conditioned.

Loadable Functionlogm (a)
Compute the matrix logarithm of the square matrix a. Note that this is
currently implemented in terms of an eigenvalue expansion and needs
to be improved to be more robust.

190 GNU Octave

Loadable Functionsqrtm (a)
Compute the matrix square root of the square matrix a. Note that
this is currently implemented in terms of an eigenvalue expansion and
needs to be improved to be more robust.

Function Filekron (a, b)
Form the kronecker product of two matrices, defined block by block as

x = [a(i, j) b]

For example,
kron (1:4, ones (3, 1))

⇒ 1 2 3 4
1 2 3 4
1 2 3 4

Function File[aa, bb, q, z] = qzhess (a, b)
Compute the Hessenberg-triangular decomposition of the matrix pen-
cil (a, b), returning aa = q * a * z, bb = q * b * z, with q and z or-
thogonal. For example,

[aa, bb, q, z] = qzhess ([1, 2; 3, 4], [5, 6; 7, 8])
⇒ aa = [-3.02244, -4.41741; 0.92998, 0.69749]
⇒ bb = [-8.60233, -9.99730; 0.00000, -0.23250]
⇒ q = [-0.58124, -0.81373; -0.81373, 0.58124]
⇒ z = [1, 0; 0, 1]

The Hessenberg-triangular decomposition is the first step in Moler and
Stewart’s QZ decomposition algorithm.
Algorithm taken from Golub and Van Loan, Matrix Computations,
2nd edition.

Loadable Functionqzval (a, b)
Compute generalized eigenvalues of the matrix pencil a− λb.
The arguments a and b must be real matrices.

Loadable Functionx = syl (a, b, c)
Solve the Sylvester equation

AX +XB + C = 0

using standard Lapack subroutines. For example,
syl ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12])

⇒ [-0.50000, -0.66667; -0.66667, -0.50000]

Chapter 18: Nonlinear Equations 191

18 Nonlinear Equations

Octave can solve sets of nonlinear equations of the form

f(x) = 0

using the function fsolve, which is based on the Minpack subroutine
hybrd.

Loadable Function[x, info] = fsolve (fcn, x0)
Given fcn, the name of a function of the form f (x) and an initial
starting point x0, fsolve solves the set of equations such that f(x)
== 0.

Loadable Functionfsolve options (opt, val)
When called with two arguments, this function allows you set options
parameters for the function fsolve. Given one argument, fsolve_
options returns the value of the corresponding option. If no argu-
ments are supplied, the names of all the available options and their
current values are displayed.

Here is a complete example. To solve the set of equations

−2x2 + 3xy + 4 sin(y)− 6 = 0

3x2 − 2xy2 + 3 cos(x) + 4 = 0

you first need to write a function to compute the value of the given func-
tion. For example:

function y = f (x)
y(1) = -2*x(1)^2 + 3*x(1)*x(2) + 4*sin(x(2)) - 6;
y(2) = 3*x(1)^2 - 2*x(1)*x(2)^2 + 3*cos(x(1)) + 4;

endfunction

Then, call fsolve with a specified initial condition to find the roots of
the system of equations. For example, given the function f defined above,

[x, info] = fsolve ("f", [1; 2])

results in the solution
x =

0.57983
2.54621

info = 1

192 GNU Octave

A value of info = 1 indicates that the solution has converged.
The function perror may be used to print English messages corre-

sponding to the numeric error codes. For example,
perror ("fsolve", 1)

� solution converged to requested tolerance

Chapter 19: Quadrature 193

19 Quadrature

19.1 Functions of One Variable

Loadable Function[v, ier, nfun, err] = quad (f, a, b, tol, sing)
Integrate a nonlinear function of one variable using Quadpack. The
first argument is the name of the function to call to compute the value
of the integrand. It must have the form

y = f (x)

where y and x are scalars.
The second and third arguments are limits of integration. Either or
both may be infinite.
The optional argument tol is a vector that specifies the desired ac-
curacy of the result. The first element of the vector is the desired
absolute tolerance, and the second element is the desired relative tol-
erance. To choose a relative test only, set the absolute tolerance to
zero. To choose an absolute test only, set the relative tolerance to
zero.
The optional argument sing is a vector of values at which the integrand
is known to be singular.
The result of the integration is returned in v and ier contains an in-
teger error code (0 indicates a successful integration). The value of
nfun indicates how many function evaluations were required, and err
contains an estimate of the error in the solution.

Loadable Functionquad options (opt, val)
When called with two arguments, this function allows you set options
parameters for the function quad. Given one argument, quad_options
returns the value of the corresponding option. If no arguments are
supplied, the names of all the available options and their current values
are displayed.

Here is an example of using quad to integrate the function

f(x) = x sin(1/x)
√

|1− x|

from x = 0 to x = 3.
This is a fairly difficult integration (plot the function over the range

of integration to see why).
The first step is to define the function:

194 GNU Octave

function y = f (x)
y = x .* sin (1 ./ x) .* sqrt (abs (1 - x));

endfunction

Note the use of the ‘dot’ forms of the operators. This is not necessary
for the call to quad, but it makes it much easier to generate a set of points
for plotting (because it makes it possible to call the function with a vector
argument to produce a vector result).

Then we simply call quad:
[v, ier, nfun, err] = quad ("f", 0, 3)

⇒ 1.9819
⇒ 1
⇒ 5061
⇒ 1.1522e-07

Although quad returns a nonzero value for ier, the result is reasonably
accurate (to see why, examine what happens to the result if you move the
lower bound to 0.1, then 0.01, then 0.001, etc.).

19.2 Orthogonal Collocation

Loadable Function[r, A, B, q] = colloc (n, "left", "right")
Compute derivative and integral weight matrices for orthogonal collo-
cation using the subroutines given in J. Villadsen and M. L. Michelsen,
Solution of Differential Equation Models by Polynomial Approxima-
tion.

Here is an example of using colloc to generate weight matrices for
solving the second order differential equation u′−αu′′ = 0 with the bound-
ary conditions u(0) = 0 and u(1) = 1.

First, we can generate the weight matrices for n points (including the
endpoints of the interval), and incorporate the boundary conditions in the
right hand side (for a specific value of α).

n = 7;
alpha = 0.1;
[r, a, b] = colloc (n-2, "left", "right");
at = a(2:n-1,2:n-1);
bt = b(2:n-1,2:n-1);
rhs = alpha * b(2:n-1,n) - a(2:n-1,n);

Then the solution at the roots r is
u = [0; (at - alpha * bt) \ rhs; 1]

⇒ [0.00; 0.004; 0.01 0.00; 0.12; 0.62; 1.00]

Chapter 20: Differential Equations 195

20 Differential Equations

Octave has two built-in functions for solving differential equations.
Both are based on reliable ODE solvers written in Fortran.

20.1 Ordinary Differential Equations

The function lsode can be used to solve ODEs of the form

dx

dt
= f(x, t)

using Hindmarsh’s ODE solver Lsode.

Loadable Functionlsode (fcn, x0, t, t crit)
Return a matrix of x as a function of t, given the initial state of the
system x0. Each row in the result matrix corresponds to one of the
elements in the vector t. The first element of t corresponds to the
initial state x0, so that the first row of the output is x0.
The first argument, fcn, is a string that names the function to call to
compute the vector of right hand sides for the set of equations. It must
have the form

xdot = f (x, t)

where xdot and x are vectors and t is a scalar.
The fourth argument is optional, and may be used to specify a set
of times that the ODE solver should not integrate past. It is useful
for avoiding difficulties with singularities and points where there is a
discontinuity in the derivative.

Here is an example of solving a set of three differential equations using
lsode. Given the function

function xdot = f (x, t)

xdot = zeros (3,1);

xdot(1) = 77.27 * (x(2) - x(1)*x(2) + x(1) \
- 8.375e-06*x(1)^2);

xdot(2) = (x(3) - x(1)*x(2) - x(2)) / 77.27;
xdot(3) = 0.161*(x(1) - x(3));

endfunction

and the initial condition x0 = [4; 1.1; 4], the set of equations can be
integrated using the command

196 GNU Octave

t = linspace (0, 500, 1000);

y = lsode ("f", x0, t);

If you try this, you will see that the value of the result changes dramat-
ically between t = 0 and 5, and again around t = 305. A more efficient
set of output points might be

t = [0, logspace (-1, log10(303), 150), \
logspace (log10(304), log10(500), 150)];

Loadable Functionlsode options (opt, val)
When called with two arguments, this function allows you set op-
tions parameters for the function lsode. Given one argument, lsode_
options returns the value of the corresponding option. If no argu-
ments are supplied, the names of all the available options and their
current values are displayed.

See Alan C. Hindmarsh, ODEPACK, A Systematized Collection of
ODE Solvers, in Scientific Computing, R. S. Stepleman, editor, (1983) for
more information about the inner workings of lsode.

20.2 Differential-Algebraic Equations

The function dassl can be used to solve DAEs of the form

0 = f(ẋ, x, t), x(t = 0) = x0, ẋ(t = 0) = ẋ0

using Petzold’s DAE solver Dassl.

Loadable Function[x, xdot] = dassl (fcn, x0, xdot0, t, t crit)
Return a matrix of states and their first derivatives with respect to t.
Each row in the result matrices correspond to one of the elements in
the vector t. The first element of t corresponds to the initial state x0
and derivative xdot0, so that the first row of the output x is x0 and
the first row of the output xdot is xdot0.
The first argument, fcn, is a string that names the function to call to
compute the vector of residuals for the set of equations. It must have
the form

res = f (x, xdot, t)

where x, xdot, and res are vectors, and t is a scalar.
The second and third arguments to dassl specify the initial condition
of the states and their derivatives, and the fourth argument specifies a

Chapter 20: Differential Equations 197

vector of output times at which the solution is desired, including the
time corresponding to the initial condition.
The set of initial states and derivatives are not strictly required to be
consistent. In practice, however, Dassl is not very good at determin-
ing a consistent set for you, so it is best if you ensure that the initial
values result in the function evaluating to zero.
The fifth argument is optional, and may be used to specify a set of
times that the DAE solver should not integrate past. It is useful for
avoiding difficulties with singularities and points where there is a dis-
continuity in the derivative.

Loadable Functiondassl options (opt, val)
When called with two arguments, this function allows you set op-
tions parameters for the function lsode. Given one argument, dassl_
options returns the value of the corresponding option. If no argu-
ments are supplied, the names of all the available options and their
current values are displayed.

See K. E. Brenan, et al., Numerical Solution of Initial-Value Prob-
lems in Differential-Algebraic Equations, North-Holland (1989) for more
information about the implementation of Dassl.

198 GNU Octave

Chapter 21: Optimization 199

21 Optimization

21.1 Quadratic Programming

There are no functions available in this section at the moment. Check
the development version of Octave for possible additions.

21.2 Nonlinear Programming

There are no functions available in this section at the moment. Check
the development version of Octave for possible additions.

21.3 Linear Least Squares

Function File[beta, v, r] = gls (y, x, o)
Generalized least squares estimation for the multivariate model y =
xb+ e with ē = 0 and cov(vec(e)) = (s2)o, where y is a t× p matrix,
x is a t× k matrix, b is a k × p matrix, e is a t× p matrix, and o is a
tp× tp matrix.
Each row of Y and X is an observation and each column a variable.
The return values beta, v, and r are defined as follows.

beta The GLS estimator for b.

v The GLS estimator for s^2.

r The matrix of GLS residuals, r = y - x * beta.

Function File[beta, sigma, r] = ols (y, x)
Ordinary least squares estimation for the multivariate model y = xb+e
with ē = 0, and cov(vec(e)) = kron (s, I) where y is a t× p matrix, x
is a t× k matrix, b is a k × p matrix, and e is a t× p matrix.
Each row of y and x is an observation and each column a variable.
The return values beta, sigma, and r are defined as follows.

beta The OLS estimator for b, beta = pinv (x) * y , where
pinv (x) denotes the pseudoinverse of x.

sigma The OLS estimator for the matrix s,
sigma = r’ * r / (t-rank(x))

where r = y-x*beta.

r The matrix of OLS residuals, r = y - x * beta.

200 GNU Octave

Chapter 22: Statistics 201

22 Statistics

The development version of Octave includes additional statistics func-
tions not described in this chapter.

Function Filemean (x)
If x is a vector, compute the mean of the elements of x

mean(x) = x̄ =
1
N

N∑
i=1

xi

If x is a matrix, compute the mean for each column and return them
in a row vector.

Function Filemedian (x)
If x is a vector, compute the median value of the elements of x.

median(x) =
{
x(�N/2�), N odd;
(x(N/2) + x(N/2 + 1))/2, N even.

If x is a matrix, compute the median value for each column and return
them in a row vector.

Function Filestd (x)
If x is a vector, compute the standard deviation of the elements of x.

std(x) = σ(x) =

√∑N
i=1(xi − x̄)
N − 1

If x is a matrix, compute the standard deviation for each column and
return them in a row vector.

Function Filecov (x, y)
If each row of x and y is an observation and each column is a vari-
able, the (i,j)-th entry of cov (x, y) is the covariance between the i-th
variable in x and the j-th variable in y. If called with one argument,
compute cov (x, x).

Function Filecorrcoef (x, y)
If each row of x and y is an observation and each column is a variable,
the (i,j)-th entry of corrcoef (x, y) is the correlation between the i-
th variable in x and the j-th variable in y. If called with one argument,
compute corrcoef (x, x).

202 GNU Octave

Function Filekurtosis (x)
If x is a vector of length N, return the kurtosis

kurtosis(x) =
1

Nσ(x)4

N∑
i=1

(xi − x̄)4 − 3

of x. If x is a matrix, return the row vector containing the kurtosis of
each column.

Function Filemahalanobis (x, y)
Return the Mahalanobis’ D-square distance between the multivariate
samples x and y, which must have the same number of components
(columns), but may have a different number of observations (rows).

Function Fileskewness (x)
If x is a vector of length N, return the skewness

skewness(x) =
1

Nσ(x)3

N∑
i=1

(xi − x̄)3

of x. If x is a matrix, return the row vector containing the skewness
of each column.

Chapter 23: Sets 203

23 Sets

Octave has a limited set of functions for managing sets of data, where
a set is defined as a collection unique elements.

Function Filecreate set (x)
Return a row vector containing the unique values in x, sorted in as-
cending order. For example,

create_set ([1, 2; 3, 4; 4, 2])
⇒ [1, 2, 3, 4]

Function Fileunion (x, y)
Return the set of elements that are in either of the sets x and y. For
example,

union ([1, 2, 4], [2, 3, 5])
⇒ [1, 2, 3, 4, 5]

Function Fileintersection (x, y)
Return the set of elements that are in both sets x and y. For example,

intersection ([1, 2, 3], [2, 3, 5])
⇒ [2, 3]

Function Filecomplement (x, y)
Return the elements of set y that are not in set x. For example,

complement ([1, 2, 3], [2, 3, 5])
⇒ 5

204 GNU Octave

Chapter 24: Polynomial Manipulations 205

24 Polynomial Manipulations

In Octave, a polynomial is represented by its coefficients (arranged in
descending order). For example, a vector of length N + 1 corresponds to
the following polynomial of order N

p(x) = c1xN + ...+ cNx+ cN+1.

Function Filecompan (c)
Compute the companion matrix corresponding to polynomial coeffi-
cient vector c.
The companion matrix is

A =

−c2/c1 −c3/c1 · · · −cN/c1 −cN+1/c1

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

The eigenvalues of the companion matrix are equal to the roots of the
polynomial.

Function Fileconv (a, b)
Convolve two vectors.
y = conv (a, b) returns a vector of length equal to length (a) +
length (b) - 1. If a and b are polynomial coefficient vectors, conv
returns the coefficients of the product polynomial.

Function Filedeconv (y, a)
Deconvolve two vectors.
[b, r] = deconv (y, a) solves for b and r such that y = conv (a, b)
+ r.
If y and a are polynomial coefficient vectors, b will contain the coeffi-
cients of the polynomial quotient and r will be a remander polynomial
of lowest order.

Function Filepoly (a)
If a is a square N-by-N matrix, poly (a) is the row vector of the
coefficients of det (z * eye (N) - a), the characteristic polynomial of
a. If x is a vector, poly (x) is a vector of coefficients of the polynomial
whose roots are the elements of x.

206 GNU Octave

Function Filepolyderiv (c)
Return the coefficients of the derivative of the polynomial whose coef-
ficients are given by vector c.

Function File[p, yf] = polyfit (x, y, n)
Return the coefficients of a polynomial p(x) of degree n that minimizes

N∑
i=1

(p(xi)− yi)2

to best fit the data in the least squares sense.

If two output arguments are requested, the second contains the values
of the polynomial for each value of x.

Function Filepolyinteg (c)
Return the coefficients of the integral of the polynomial whose coeffi-
cients are represented by the vector c.
The constant of integration is set to zero.

Function Filepolyreduce (c)
Reduces a polynomial coefficient vector to a minimum number of terms
by stripping off any leading zeros.

Function Filepolyval (c, x)
Evaluate a polynomial.
polyval (c, x) will evaluate the polynomial at the specified value of
x.
If x is a vector or matrix, the polynomial is evaluated at each of the
elements of x.

Function Filepolyvalm (c, x)
Evaluate a polynomial in the matrix sense.
polyvalm (c, x) will evaluate the polynomial in the matrix sense, i.e.
matrix multiplication is used instead of element by element multipli-
cation as is used in polyval.
The argument x must be a square matrix.

Function Fileresidue (b, a, tol)
If b and a are vectors of polynomial coefficients, then residue calculates
the partial fraction expansion corresponding to the ratio of the two
polynomials.

Chapter 24: Polynomial Manipulations 207

The function residue returns r, p, k, and e, where the vector r contains
the residue terms, p contains the pole values, k contains the coefficients
of a direct polynomial term (if it exists) and e is a vector containing
the powers of the denominators in the partial fraction terms.
Assuming b and a represent polynomials P (s) and Q(s) we have:

P (s)
Q(s)

=
M∑

m=1

rm
(s− pm)em

+
N∑

i=1

kis
N−i.

where M is the number of poles (the length of the r, p, and e vectors)
and N is the length of the k vector.
The argument tol is optional, and if not specified, a default value of
0.001 is assumed. The tolerance value is used to determine whether
poles with small imaginary components are declared real. It is also
used to determine if two poles are distinct. If the ratio of the imaginary
part of a pole to the real part is less than tol, the imaginary part is
discarded. If two poles are farther apart than tol they are distinct.
For example,

b = [1, 1, 1];
a = [1, -5, 8, -4];
[r, p, k, e] = residue (b, a);

⇒ r = [-2, 7, 3]
⇒ p = [2, 2, 1]
⇒ k = [](0x0)
⇒ e = [1, 2, 1]

which implies the following partial fraction expansion

s2 + s+ 1
s3 − 5s2 + 8s− 4

=
−2
s− 2

+
7

(s− 2)2
+

3
s− 1

Function Fileroots (v)
For a vector v with N components, return the roots of the polynomial

v1z
N−1 + · · ·+ vN−1z + vN .

208 GNU Octave

Chapter 25: Control Theory 209

25 Control Theory

Most of the functions described in this chapter were contributed by A.
Scottedward Hodel A.S.Hodel@eng.auburn.edu and R. Bruce Tenison
Bruce.Tenison@eng.auburn.edu. They have also written a larger collec-
tion of functions for solving linear control problems. It is currently being
updated for Octave version 2, with snapshots of the sources available from
ftp://ftp.eng.auburn.edu/pub/hodel.

Function File[n, m, p] = abcddim (a, b, c, d)
Check for compatibility of the dimensions of the matrices defining the
linear system [A,B,C,D] corresponding to

dx

dt
= Ax+Bu

y = Cx+Du

or a similar discrete-time system.
If the matrices are compatibly dimensioned, then abcddim returns

n The number of system states.

m The number of system inputs.

p The number of system outputs.

Otherwise abcddim returns n = m = p = −1.

Function Fileare (a, b, c, opt)
Return the solution, x, of the algebraic Riccati equation

ATX +XA−XBX + C = 0

for identically dimensioned square matrices a, b, and c. If b is not
square, are attempts to use b*b’ instead. If c is not square, are
attempts to use c’*c) instead.
To form the solution, Laub’s Schur method (IEEE Transactions on
Automatic Control, 1979) is applied to the appropriate Hamiltonian
matrix.
The optional argument opt is passed to the eigenvalue balancing rou-
tine. If it is omitted, a value of "B" is assumed.

Function Filec2d (a, b, t)
Convert the continuous time system described by:

dx

dt
= Ax+Bu

210 GNU Octave

into a discrete time equivalent model

xk+1 = Adxk +Bduk

via the matrix exponential assuming a zero-order hold on the input
and sample time t.

Function Filedare (a, b, c, r, opt)
Return the solution, x of the discrete-time algebraic Riccati equation

ATXA−X +ATXB(R+BTXB)−1BTXA+ C = 0

for matrices with dimensions:

a n by n.

b n by m.

c n by n, symmetric positive semidefinite.

r m by m, symmetric positive definite (invertible).

If c is not square, then the function attempts to use c’*c instead.
To form the solution, Laub’s Schur method (IEEE Transactions on Au-
tomatic Control, 1979) is applied to the appropriate symplectic matrix.
See also Ran and Rodman, Stable Hermitian Solutions of Discrete Al-
gebraic Riccati Equations, Mathematics of Control, Signals and Sys-
tems, Volume 5, Number 2 (1992).
The optional argument opt is passed to the eigenvalue balancing rou-
tine. If it is omitted, a value of "B" is assumed.

Function Filedgram (a, b)
Return the discrete controllability or observability gramian for the
discrete time system described by

xk+1 = Axk +Buk

yk = Cxk +Duk

For example, dgram (a, b) returns the discrete controllability gramian
and dgram (a’, c’) returns the observability gramian.

Function File[l, m, p, e] = dlqe (a, g, c, sigw, sigv, z)
Construct the linear quadratic estimator (Kalman filter) for the dis-
crete time system

xk+1 = Axk +Buk +Gwk

Chapter 25: Control Theory 211

yk = Cxk +Duk + wk

where w, v are zero-mean gaussian noise processes with respective
intensities sigw = cov (w, w) and sigv = cov (v, v).
If specified, z is cov (w, v). Otherwise cov (w, v) = 0.
The observer structure is

zk+1 = Azk +Buk + k(yk − Czk −Duk)

The following values are returned:

l The observer gain, (A−ALC). is stable.
m The Riccati equation solution.

p The estimate error covariance after the measurement up-
date.

e The closed loop poles of (A−ALC).

Function File[k, p, e] = dlqr (a, b, q, r, z)
Construct the linear quadratic regulator for the discrete time system

xk+1 = Axk +Buk

to minimize the cost functional

J =
∑
xTQx+ uTRu

z omitted or

J =
∑
xTQx+ uTRu+ 2xTZu

z included.
The following values are returned:

k The state feedback gain, (A−BK) is stable.

p The solution of algebraic Riccati equation.

e The closed loop poles of (A−BK).

Function Filedlyap (a, b)
Solve the discrete-time Lyapunov equation AXAT − X + B = 0 for
square matrices a, b. If b is not square, then the function attempts
to solve either AXAT − X + BBT = 0 or ATXA − X + BTB = 0,
whichever is appropriate.
Uses Schur decomposition method as in Kitagawa An Algorithm for
Solving the Matrix Equation X = FXF ′ + S, International Journal
of Control, Volume 25, Number 5, pages 745–753 (1977); column-by-
column solution method as suggested in Hammerling, Numerical So-
lution of the Stable, Non-Negative Definite Lyapunov Equation, IMA
Journal of Numerical Analysis, Volume 2, pages 303–323 (1982).

212 GNU Octave

Function Fileis controllable (a, b, tol)
Return 1 if the pair (a, b) is controllable. Otherwise, return 0.
The optional argument tol is a roundoff parameter. If it is omitted, a
value of 2*eps is used.
Currently, is_controllable just constructs the controllability matrix
and checks rank.

Function Fileis observable (a, c, tol)
Return 1 if the pair (a, c) is observable. Otherwise, return 0.
The optional argument tol is a roundoff parameter. If it is omitted, a
value of 2*eps is used.

Function File[k, p, e] = lqe (a, g, c, sigw, sigv, z)
Construct the linear quadratic estimator (Kalman filter) for the con-
tinuous time system

dx

dt
= Ax+Bu

y = Cx+Du

where w and v are zero-mean gaussian noise processes with respective
intensities

sigw = cov (w, w)
sigv = cov (v, v)

The optional argument z is the cross-covariance cov (w, v). If it is
omitted, cov (w, v) = 0 is assumed.
Observer structure is dz/dt = A z + B u + k (y - C z - D u)

The following values are returned:

k The observer gain, (A−KC) is stable.
p The solution of algebraic Riccati equation.

e The vector of closed loop poles of (A−KC).

Function File[k, p, e] = lqr (a, b, q, r, z)
construct the linear quadratic regulator for the continuous time system

dx

dt
= Ax+Bu

to minimize the cost functional

J =
∫ ∞

0

xTQx+ uTRu

Chapter 25: Control Theory 213

z omitted or

J =
∫ ∞

0

xTQx+ uTRu+ 2xTZu

z included.
The following values are returned:

k The state feedback gain, (A−BK) is stable.

p The stabilizing solution of appropriate algebraic Riccati
equation.

e The vector of the closed loop poles of (A−BK).

Function Filelyap (a, b, c)
Solve the Lyapunov (or Sylvester) equation via the Bartels-Stewart
algorithm (Communications of the ACM, 1972).
If a, b, and c are specified, then lyap returns the solution of the
Sylvester equation

AX +XB + C = 0

If only (a, b) are specified, then lyap returns the solution of the
Lyapunov equation

ATX +XA+B = 0

If b is not square, then lyap returns the solution of either

ATX +XA+BTB = 0

or
AX +XAT +BBT = 0

whichever is appropriate.

Function Filetzero (a, b, c, d, opt)
Compute the transmission zeros of [A,B,C,D].
The optional argument opt is passed to the eigenvalue balancing rou-
tine. If it is omitted, a value of "B" is assumed.

214 GNU Octave

Chapter 26: Signal Processing 215

26 Signal Processing

The development version of Octave includes additional signal process-
ing functions not described in this chapter.

Function Filedetrend (x, p)
If x is a vector, detrend (x, p) removes the best fit of a polynomial
of order p from the data x.
If x is a matrix, detrend (x, p) does the same for each column in x.
The second argument is optional. If it is not specified, a value of 1 is
assumed. This corresponds to removing a linear trend.

Functionfft (a, n)
Compute the FFT of a using subroutines from Fftpack. If a is a
matrix, fft computes the FFT for each column of a.
If called with two arguments, n is expected to be an integer specifying
the number of elements of a to use. If a is a matrix, n specifies the
number of rows of a to use. If n is larger than the size of a, a is resized
and padded with zeros.

Loadable Functionifft (a, n)
Compute the inverse FFT of a using subroutines from Fftpack. If a
is a matrix, fft computes the inverse FFT for each column of a.
If called with two arguments, n is expected to be an integer specifying
the number of elements of a to use. If a is a matrix, n specifies the
number of rows of a to use. If n is larger than the size of a, a is resized
and padded with zeros.

Loadable Functionfft2 (a, n, m)
Compute the two dimensional FFT of a.
The optional arguments n and m may be used specify the number of
rows and columns of a to use. If either of these is larger than the size
of a, a is resized and padded with zeros.

Loadable Functionifft2 (a, n, m)
Compute the two dimensional inverse FFT of a.
The optional arguments n and m may be used specify the number of
rows and columns of a to use. If either of these is larger than the size
of a, a is resized and padded with zeros.

216 GNU Octave

Built-in Functionfftconv (a, b, n)
Return the convolution of the vectors a and b, as a vector with length
equal to the length (a) + length (b) - 1. If a and b are the coeffi-
cient vectors of two polynomials, the returned value is the coefficient
vector of the product polynomial.
The computation uses the FFT by calling the function fftfilt. If
the optional argument n is specified, an N-point FFT is used.

Function Filefftfilt (b, x, n)
With two arguments, fftfilt filters x with the FIR filter b using the
FFT.
Given the optional third argument, n, fftfilt uses the overlap-add
method to filter x with b using an N-point FFT.

Loadable Functiony = filter (b, a, x)
Return the solution to the following linear, time-invariant difference
equation:

N∑
k=0

ak+1yn−k =
M∑

k=0

bk+1xn−k, 1 ≤ n ≤ P

where a ∈ �N−1, b ∈ �M−1, and x ∈ �P . An equivalent form of this
equation is:

yn = −
N∑

k=1

ck+1yn−k +
M∑

k=0

dk+1xn−k, 1 ≤ n ≤ P

where c = a/a1 and d = b/a1.
In terms of the z-transform, y is the result of passing the discrete-
time signal x through a system characterized by the following rational
system function:

H(z) =

M∑
k=0

dk+1z
−k

1 +
N∑

k+1

ck+1z
−k

Loadable Function[y, sf] = filter (b, a, x, si)
This is the same as the filter function described above, except that si
is taken as the initial state of the system and the final state is returned
as sf. The state vector is a column vector whose length is equal to the
length of the longest coefficient vector minus one. If si is not set, the
initial state vector is set to all zeros.

Chapter 26: Signal Processing 217

Function File[h, w] = freqz (b, a, n, "whole")
Return the complex frequency response h of the rational IIR filter
whose numerator and denominator coefficients are b and a, respec-
tively. The response is evaluated at n angular frequencies between 0
and 2π.
The output value w is a vector of the frequencies.
If the fourth argument is omitted, the response is evaluated at frequen-
cies between 0 and π.
If n is omitted, a value of 512 is assumed.
If a is omitted, the denominator is assumed to be 1 (this corresponds
to a simple FIR filter).
For fastest computation, n should factor into a small number of small
primes.

Function Filesinc (x)
Return sin(πx)/(πx).

218 GNU Octave

Chapter 27: Image Processing 219

27 Image Processing

Octave can display images with the X Window System using the
xloadimage program. You do not need to be running X in order to
manipulate images, however, so some of these functions may be useful
even if you are not able to view the results.

Loading images only works with Octave’s image format (a file with
a matrix containing the image data, and a matrix containing the col-
ormap). Contributions of robust, well-written functions to read other
image formats are welcome. If you can provide them, or would like to im-
prove Octave’s image processing capabilities in other ways, please contact
bug-octave@bevo.che.wisc.edu.

Function Filecolormap (map)
Function Filecolormap ("default")

Set the current colormap.
colormap (map) sets the current colormap to map. The color map
should be an n row by 3 column matrix. The columns contain red,
green, and blue intensities respectively. All entries should be between
0 and 1 inclusive. The new colormap is returned.
colormap ("default") restores the default colormap (a gray scale col-
ormap with 64 entries). The default colormap is returned.
With no arguments, colormap returns the current color map.

Function Filegray (n)
Return a gray colormap with n entries corresponding to values from
0 to n-1. The argument n should be a scalar. If it is omitted, 64 is
assumed.

Function File[img, map] = gray2ind ()
Convert a gray scale intensity image to an Octave indexed image.

Function Fileimage (x, zoom)
Display a matrix as a color image. The elements of x are indices into
the current colormap and should have values between 1 and the length
of the colormap. If zoom is omitted, a value of 4 is assumed.

Function Fileimagesc (x, zoom)
Display a scaled version of the matrix x as a color image. The matrix
is scaled so that its entries are indices into the current colormap. The
scaled matrix is returned. If zoom is omitted, a value of 4 is assumed.

220 GNU Octave

Function Fileimshow (x, map)
Function Fileimshow (x, n)
Function Fileimshow (i, n)
Function Fileimshow (r, g, b)

Display images.
imshow (x) displays an indexed image using the current colormap.
imshow (x, map) displays an indexed image using the specified col-
ormap.
imshow (i, n) displays a gray scale intensity image.
imshow (r, g, b) displays an RGB image.

Function Fileind2gray (x, map)
Convert an Octave indexed image to a gray scale intensity image. If
map is omitted, the current colormap is used to determine the inten-
sities.

Function File[r, g, b] = ind2rgb (x, map)
Convert an indexed image to red, green, and blue color components.
If map is omitted, the current colormap is used for the conversion.

Function File[x, map] = loadimage (file)
Load an image file and it’s associated color map from the specified file.
The image must be stored in Octave’s image format.

Function Filergb2ntsc (rgb)
Image format conversion.

Function Filentsc2rgb (yiq)
Image format conversion.

Function Fileocean (n)
Create color colormap. The argument n should be a scalar. If it is
omitted, 64 is assumed.

Function File[x, map] = rgb2ind (r, g, b)
Convert and RGB image to an Octave indexed image.

Function Filesaveimage (file, x, fmt, map)
Save the matrix x to file in image format fmt. Valid values for fmt are

"img" Octave’s image format. The current colormap is also
saved in the file.

Chapter 27: Image Processing 221

"ppm" Portable pixmap format.

"ps" PostScript format. Note that images saved in PostScript
format can not be read back into Octave with loadimage.

If the fourth argument is supplied, the specified colormap will also be
saved along with the image.
Note: if the colormap contains only two entries and these entries are
black and white, the bitmap ppm and PostScript formats are used.
If the image is a gray scale image (the entries within each row of the
colormap are equal) the gray scale ppm and PostScript image formats
are used, otherwise the full color formats are used.

Built-in VariableIMAGEPATH
A colon separated list of directories in which to search for image files.

222 GNU Octave

Chapter 28: Audio Processing 223

28 Audio Processing

Octave provides a few functions for dealing with audio data. An audio
‘sample’ is a single output value from an A/D converter, i.e., a small
integer number (usually 8 or 16 bits), and audio data is just a series of
such samples. It can be characterized by three parameters: the sampling
rate (measured in samples per second or Hz, e.g. 8000 or 44100), the
number of bits per sample (e.g. 8 or 16), and the number of channels (1
for mono, 2 for stereo, etc.).

There are many different formats for representing such data. Cur-
rently, only the two most popular, linear encoding and mu-law encoding,
are supported by Octave. There is an excellent FAQ on audio formats by
Guido van Rossum <guido@cwi.nl> which can be found at any FAQ ftp site,
in particular in the directory ‘/pub/usenet/news.answers/audio-fmts’
of the archive site rtfm.mit.edu.

Octave simply treats audio data as vectors of samples (non-mono data
are not supported yet). It is assumed that audio files using linear encoding
have one of the extensions ‘lin’ or ‘raw’, and that files holding data in
mu-law encoding end in ‘au’, ‘mu’, or ‘snd’.

Function Filelin2mu (x)
If the vector x represents mono audio data in 8- or 16-bit linear en-
coding, lin2mu (x) is the corresponding mu-law encoding.

Function Filemu2lin (x, bps)
If the vector x represents mono audio data in mu-law encoding, mu2lin
converts it to linear encoding. The optional argument bps specifies
whether the input data uses 8 bit per sample (default) or 16 bit.

Function Fileloadaudio (name, ext, bps)
Loads audio data from the file ‘name.ext’ into the vector x.
The extension ext determines how the data in the audio file is inter-
preted; the extensions ‘lin’ (default) and ‘raw’ correspond to linear,
the extensions ‘au’, ‘mu’, or ‘snd’ to mu-law encoding.
The argument bps can be either 8 (default) or 16, and specifies the
number of bits per sample used in the audio file.

Function Filesaveaudio (name, x, ext, bps)
Saves a vector x of audio data to the file ‘name.ext’. The optional
parameters ext and bps determine the encoding and the number of
bits per sample used in the audio file (see loadaudio); defaults are
‘lin’ and 8, respectively.

224 GNU Octave

The following functions for audio I/O require special A/D hardware
and operating system support. It is assumed that audio data in linear
encoding can be played and recorded by reading from and writing to
‘/dev/dsp’, and that similarly ‘/dev/audio’ is used for mu-law encoding.
These file names are system-dependent. Improvements so that these func-
tions will work without modification on a wide variety of hardware are
welcome.

Function Fileplayaudio (name, ext)
Function Fileplayaudio (x)

Plays the audio file ‘name.ext’ or the audio data stored in the vector
x.

Function Filerecord (sec, sampling rate)
Records sec seconds of audio input into the vector x. The default value
for sampling rate is 8000 samples per second, or 8kHz. The program
waits until the user types 〈RET〉 and then immediately starts to record.

Function Filesetaudio (type)
Function Filesetaudio (type, value)

Set or display various properties of your mixer hardware.
For example, if vol corresponds to the volume property, you can set
it to 50 (percent) by setaudio ("vol", 50).
This is an simple experimental program to control the audio hardware
settings. It assumes that there is a mixer program which can be used as
mixer type value, and simply executes system ("mixer type value").
Future releases might get rid of this assumption by using the fcntl
interface.

Chapter 29: System Utilities 225

29 System Utilities

This chapter describes the functions that are available to allow you
to get information about what is happening outside of Octave, while it
is still running, and use this information in your program. For example,
you can get information about environment variables, the current time,
and even start other programs from the Octave prompt.

29.1 Timing Utilities

Octave’s core set of functions for manipulating time values are pat-
terned after the corresponding functions from the standard C library.
Several of these functions use a data structure for time that includes the
following elements:

usec Microseconds after the second (0-999999).

sec Seconds after the minute (0-61). This number can be 61 to
account for leap seconds.

min Minutes after the hour (0-59).

hour Hours since midnight (0-23).

mday Day of the month (1-31).

mon Months since January (0-11).

year Years since 1900.

wday Days since Sunday (0-6).

yday Days since January 1 (0-365).

isdst Daylight Savings Time flag.

zone Time zone.

In the descriptions of the following functions, this structure is referred to
as a tm struct.

Loadable Functiontime ()
Return the current time as the number of seconds since the epoch. The
epoch is referenced to 00:00:00 CUT (Coordinated Universal Time) 1
Jan 1970. For example, on Monday February 17, 1997 at 07:15:06
CUT, the value returned by time was 856163706.

226 GNU Octave

Function Filectime (t)
Convert a value returned from time (or any other nonnegative integer),
to the local time and return a string of the same form as asctime. The
function ctime (time) is equivalent to asctime (localtime (time)).
For example,

ctime (time ())
⇒ "Mon Feb 17 01:15:06 1997"

Loadable Functiongmtime (t)
Given a value returned from time (or any nonnegative integer), return
a time structure corresponding to CUT. For example,

gmtime (time ())
⇒ {

usec = 0
year = 97
mon = 1
mday = 17
sec = 6
zone = CST
min = 15
wday = 1
hour = 7
isdst = 0
yday = 47

}

Loadable Functionlocaltime (t)
Given a value returned from time (or any nonnegative integer), return
a time structure corresponding to the local time zone.

localtime (time ())
⇒ {

usec = 0
year = 97
mon = 1
mday = 17
sec = 6
zone = CST
min = 15
wday = 1
hour = 1
isdst = 0
yday = 47

Chapter 29: System Utilities 227

}

Loadable Functionmktime (tm struct)
Convert a time structure corresponding to the local time to the number
of seconds since the epoch. For example,

mktime (localtime (time ())
⇒ 856163706

Function Fileasctime (tm struct)
Convert a time structure to a string using the following five-field for-
mat: Thu Mar 28 08:40:14 1996. For example,

asctime (localtime (time ())
⇒ "Mon Feb 17 01:15:06 1997\n"

This is equivalent to ctime (time ()).

Loadable Functionstrftime (tm struct)
Format a time structure in a flexible way using ‘%’ substitutions similar
to those in printf. Except where noted, substituted fields have a fixed
size; numeric fields are padded if necessary. Padding is with zeros by
default; for fields that display a single number, padding can be changed
or inhibited by following the ‘%’ with one of the modifiers described
below. Unknown field specifiers are copied as normal characters. All
other characters are copied to the output without change. For example,

strftime ("%r (%Z) %A %e %B %Y", localtime (time ())
⇒ "01:15:06 AM (CST) Monday 17 February 1997"

Octave’s strftime function supports a superset of the ANSI C field
specifiers.
Literal character fields:

% % character.

n Newline character.

t Tab character.

Numeric modifiers (a nonstandard extension):

- (dash) Do not pad the field.

_ (underscore)
Pad the field with spaces.

Time fields:

%H Hour (00-23).

%I Hour (01-12).

228 GNU Octave

%k Hour (0-23).

%l Hour (1-12).

%M Minute (00-59).

%p Locale’s AM or PM.

%r Time, 12-hour (hh:mm:ss [AP]M).

%R Time, 24-hour (hh:mm).

%s Time in seconds since 00:00:00, Jan 1, 1970 (a nonstan-
dard extension).

%S Second (00-61).

%T Time, 24-hour (hh:mm:ss).

%X Locale’s time representation (%H:%M:%S).

%Z Time zone (EDT), or nothing if no time zone is deter-
minable.

Date fields:

%a Locale’s abbreviated weekday name (Sun-Sat).

%A Locale’s full weekday name, variable length (Sunday-
Saturday).

%b Locale’s abbreviated month name (Jan-Dec).

%B Locale’s full month name, variable length (January-
December).

%c Locale’s date and time (Sat Nov 04 12:02:33 EST 1989).

%C Century (00-99).

%d Day of month (01-31).

%e Day of month (1-31).

%D Date (mm/dd/yy).

%h Same as %b.

%j Day of year (001-366).

%m Month (01-12).

%U Week number of year with Sunday as first day of week
(00-53).

%w Day of week (0-6).

Chapter 29: System Utilities 229

%W Week number of year with Monday as first day of week
(00-53).

%x Locale’s date representation (mm/dd/yy).

%y Last two digits of year (00-99).

%Y Year (1970-).

Most of the remaining functions described in this section are not pat-
terned after the standard C library. Some are available for compatiblity
with Matlab and others are provided because they are useful.

Function Fileclock ()
Return a vector containing the current year, month (1-12), day (1-31),
hour (0-23), minute (0-59) and second (0-61). For example,

clock ()
⇒ [1993, 8, 20, 4, 56, 1]

The function clock is more accurate on systems that have the
gettimeofday function.

Function Filedate ()
Return the date as a character string in the form DD-MMM-YY. For
example,

date ()
⇒ "20-Aug-93"

Function Fileetime (t1, t2)
Return the difference (in seconds) between two time values returned
from clock. For example:

t0 = clock ();
many computations later...
elapsed_time = etime (clock (), t0);

will set the variable elapsed_time to the number of seconds since the
variable t0 was set.

Built-in Function[total, user, system] = cputime ();
Return the CPU time used by your Octave session. The first output
is the total time spent executing your process and is equal to the sum
of second and third outputs, which are the number of CPU seconds
spent executing in user mode and the number of CPU seconds spent
executing in system mode, respectively. If your system does not have a
way to report CPU time usage, cputime returns 0 for each of its output
values. Note that because Octave used some CPU time to start, it is

230 GNU Octave

reasonable to check to see if cputime works by checking to see if the
total CPU time used is nonzero.

Function Fileis leap year (year)
Return 1 if the given year is a leap year and 0 otherwise. If no ar-
guments are provided, is_leap_year will use the current year. For
example,

is_leap_year (2000)
⇒ 1

Function Filetic ()
Function Filetoc ()

These functions set and check a wall-clock timer. For example,
tic ();
many computations later...
elapsed_time = toc ();

will set the variable elapsed_time to the number of seconds since the
most recent call to the function tic.
If you are more interested in the CPU time that your process used, you
should use the cputime function instead. The tic and toc functions
report the actual wall clock time that elapsed between the calls. This
may include time spent processing other jobs or doing nothing at all.
For example,

tic (); sleep (5); toc ()
⇒ 5

t = cputime (); sleep (5); cputime () - t
⇒ 0

(This example also illustrates that the CPU timer may have a fairly
coarse resolution.)

Built-in Functionpause (seconds)
Suspend the execution of the program. If invoked without any ar-
guments, Octave waits until you type a character. With a numeric
argument, it pauses for the given number of seconds. For example, the
following statement prints a message and then waits 5 seconds before
clearing the screen.

fprintf (stderr, "wait please...\n");
pause (5);
clc;

Built-in Functionsleep (seconds)
Suspend the execution of the program for the given number of seconds.

Chapter 29: System Utilities 231

Built-in Functionusleep (microseconds)
Suspend the execution of the program for the given number of mi-
croseconds. On systems where it is not possible to sleep for periods of
time less than one second, usleep will pause the execution for round
(microseconds / 1e6) seconds.

29.2 Filesystem Utilities

Octave includes the following functions for renaming and deleting files,
creating, deleting, and reading directories, and for getting information
about the status of files.

Built-in Function[err, msg] = rename (old, new)
Change the name of file old to new.
If successful, err is 0 and msg is an empty string. Otherwise, err is
nonzero and msg contains a system-dependent error message.

Built-in Function[err, msg] = unlink (file)
Delete file.
If successful, err is 0 and msg is an empty string. Otherwise, err is
nonzero and msg contains a system-dependent error message.

Built-in Function[files, err, msg] = readdir (dir)
Return names of the files in the directory dir as an array of strings. If
an error occurs, return an empty matrix in files.
If successful, err is 0 and msg is an empty string. Otherwise, err is
nonzero and msg contains a system-dependent error message.

Built-in Function[err, msg] = mkdir (dir)
Create a directory named dir.
If successful, err is 0 and msg is an empty string. Otherwise, err is
nonzero and msg contains a system-dependent error message.

Built-in Function[err, msg] = rmdir (dir)
Remove the directory named dir.
If successful, err is 0 and msg is an empty string. Otherwise, err is
nonzero and msg contains a system-dependent error message.

Built-in Function[err, msg] = mkfifo (name)
Create a FIFO special file.
If successful, err is 0 and msg is an empty string. Otherwise, err is
nonzero and msg contains a system-dependent error message.

232 GNU Octave

Built-in Functionumask (mask)
Set the permission mask for file creation. The parameter mask is
interpreted as an octal number.

Built-in Function[info, err, msg] = stat (file)
Built-in Function[info, err, msg] = lstat (file)

Return a structure s containing the following information about file.

dev ID of device containing a directory entry for this file.

ino File number of the file.

modestr File mode, as a string of ten letters or dashes as would
be returned by ls -l.

nlink Number of links.

uid User ID of file’s owner.

gid Group ID of file’s group.

rdev ID of device for block or character special files.

size Size in bytes.

atime Time of last access in the same form as time values re-
turned from time. See Section 29.1 [Timing Utilities],
page 225.

mtime Time of last modification in the same form as time values
returned from time. See Section 29.1 [Timing Utilities],
page 225.

ctime Time of last file status change in the same form as time
values returned from time. See Section 29.1 [Timing Util-
ities], page 225.

blksize Size of blocks in the file.

blocks Number of blocks allocated for file.

If the call is successful err is 0 and msg is an empty string. If the file
does not exist, or some other error occurs, s is an empty matrix, err
is −1, and msg contains the corresponding system error message.
If file is a symbolic link, stat will return information about the actual
file the is referenced by the link. Use lstat if you want information
about the symbolic link itself.
For example,

Chapter 29: System Utilities 233

[s, err, msg] = stat ("/vmlinuz")
⇒ s =

{
atime = 855399756
rdev = 0
ctime = 847219094
uid = 0
size = 389218
blksize = 4096
mtime = 847219094
gid = 6
nlink = 1
blocks = 768
modestr = -rw-r--r--
ino = 9316
dev = 2049

}
⇒ err = 0
⇒ msg =

Built-in Functionglob (pattern)
Given an array of strings in pattern, return the list of file names that
any of them, or an empty string if no patterns match. Tilde expansion
is performed on each of the patterns before looking for matching file
names. For example,

glob ("/vm*")
⇒ "/vmlinuz"

Note that multiple values are returned in a string matrix with the fill
character set to ASCII NUL.

Built-in Functionfnmatch (pattern, string)
Return 1 or zero for each element of string that matches any of the
elements of the string array pattern, using the rules of filename pattern
matching. For example,

fnmatch ("a*b", ["ab"; "axyzb"; "xyzab"])
⇒ [1; 1; 0]

Built-in Functionfile in path (path, file)
Return the absolute name name of file if it can be found in path.
The value of path should be a colon-separated list of directories in the
format described for the built-in variable LOADPATH.

234 GNU Octave

If the file cannot be found in the path, an empty matrix is returned.
For example,

file_in_path (LOADPATH, "nargchk.m")
⇒ "/usr/local/share/octave/2.0/m/general/nargchk.m"

Built-in Functiontilde expand (string)
Performs tilde expansion on string. If string begins with a tilde char-
acter, (‘~’), all of the characters preceding the first slash (or all char-
acters, if there is no slash) are treated as a possible user name, and
the tilde and the following characters up to the slash are replaced by
the home directory of the named user. If the tilde is followed imme-
diately by a slash, the tilde is replaced by the home directory of the
user running Octave. For example,

tilde_expand ("~joeuser/bin")
⇒ "/home/joeuser/bin"

tilde_expand ("~/bin")
⇒ "/home/jwe/bin"

29.3 Controlling Subprocesses

Octave includes some high-level commands like system and popen for
starting subprocesses. If you want to run another program to perform
some task and then look at its output, you will probably want to use
these functions.

Octave also provides several very low-level Unix-like functions which
can also be used for starting subprocesses, but you should probably only
use them if you can’t find any way to do what you need with the higher-
level functions.

Built-in Functionsystem (string, return output, type)
Execute a shell command specified by string. The second argument is
optional. If type is "async", the process is started in the background
and the process id of the child process is returned immediately. Oth-
erwise, the process is started, and Octave waits until it exits. If type
argument is omitted, a value of "sync" is assumed.
If two input arguments are given (the actual value of return output is
irrelevant) and the subprocess is started synchronously, or if system is
called with one input argument and one or more output arguments, the
output from the command is returned. Otherwise, if the subprocess
is executed synchronously, it’s output is sent to the standard output.
To send the output of a command executed with system through the
pager, use a command like

Chapter 29: System Utilities 235

disp (system (cmd, 1));

or
printf ("%s\n", system (cmd, 1));

The system function can return two values. The first is any output
from the command that was written to the standard output stream,
and the second is the output status of the command. For example,

[output, status] = system ("echo foo; exit 2");

will set the variable output to the string ‘foo’, and the variable status
to the integer ‘2’.

Built-in Functionfid = popen (command, mode)
Start a process and create a pipe. The name of the command to run
is given by command. The file identifier corresponding to the input or
output stream of the process is returned in fid. The argument mode
may be

"r" The pipe will be connected to the standard output of the
process, and open for reading.

"w" The pipe will be connected to the standard input of the
process, and open for writing.

For example,
fid = popen ("ls -ltr / | tail -3", "r");
while (isstr (s = fgets (fid)))
fputs (stdout, s);

endwhile
� drwxr-xr-x 33 root root 3072 Feb 15 13:28 etc
� drwxr-xr-x 3 root root 1024 Feb 15 13:28 lib
� drwxrwxrwt 15 root root 2048 Feb 17 14:53 tmp

Built-in Functionpclose (fid)
Close a file identifier that was opened by popen. You may also use
fclose for the same purpose.

Built-in Function[in, out, pid] = popen2 (command, args)
Start a subprocess with two-way communication. The name of the
process is given by command, and args is an array of strings containing
options for the command. The file identifiers for the input and output
streams of the subprocess are returned in in and out. If execution of the
command is successful, pid contains the process ID of the subprocess.
Otherwise, pid is −1.
For example,

236 GNU Octave

[in, out, pid] = popen2 ("sort", "-nr");
fputs (in, "these\nare\nsome\nstrings\n");
fclose (in);
while (isstr (s = fgets (out)))
fputs (stdout, s);

endwhile
fclose (out);

� are
� some
� strings
� these

Built-in VariableEXEC PATH
The variable EXEC_PATH is a colon separated list of directories to search
when executing subprograms. Its initial value is taken from the en-
vironment variable OCTAVE_EXEC_PATH (if it exists) or PATH, but that
value can be overridden by the command line argument --exec-path
PATH, or by setting the value of EXEC_PATH in a startup script. If the
value of EXEC_PATH begins (ends) with a colon, the directories

octave-home/libexec/octave/site/exec/arch
octave-home/libexec/octave/version/exec/arch

are prepended (appended) to EXEC_PATH, where octave-home is the
top-level directory where all of Octave is installed (the default value is
‘/usr/local’). If you don’t specify a value for EXEC_PATH explicitly,
these special directories are prepended to your shell path.

In most cases, the following functions simply decode their arguments
and make the corresponding Unix system calls. For a complete example
of how they can be used, look at the definition of the function popen2.

Built-in Function[pid, msg] = fork ()
Create a copy of the current process.
Fork can return one of the following values:

> 0 You are in the parent process. The value returned from
fork is the process id of the child process. You should
probably arrange to wait for any child processes to exit.

0 You are in the child process. You can call exec to start
another process. If that fails, you should probably call
exit.

< 0 The call to fork failed for some reason. You must take
evasive action. A system dependent error message will
be waiting in msg.

Chapter 29: System Utilities 237

Built-in Function[err, msg] = exec (file, args)
Replace current process with a new process. Calling exec without first
calling fork will terminate your current Octave process and replace it
with the program named by file. For example,

exec ("ls" "-l")

will run ls and return you to your shell prompt.
If successful, exec does not return. If exec does return, err will be
nonzero, and msg will contain a system-dependent error message.

Built-in Function[file ids, err, msg] = pipe ()
Create a pipe and return the vector file ids, which corresponding to
the reading and writing ends of the pipe.
If successful, err is 0 and msg is an empty string. Otherwise, err is
nonzero and msg contains a system-dependent error message.

Built-in Function[fid, msg] = dup2 (old, new)
Duplicate a file descriptor.
If successful, fid is greater than zero and contains the new file ID.
Otherwise, fid is negative and msg contains a system-dependent error
message.

Built-in Function[pid, msg] = waitpid (pid, options)
Wait for process pid to terminate. The pid argument can be:

−1 Wait for any child process.

0 Wait for any child process whose process group ID is
equal to that of the Octave interpreter process.

> 0 Wait for termination of the child process with ID pid.

The options argument can be:

0 Wait until signal is received or a child process exits (this
is the default if the options argument is missing).

1 Do not hang if status is not immediately available.

2 Report the status of any child processes that are stopped,
and whose status has not yet been reported since they
stopped.

3 Implies both 1 and 2.

If the returned value of pid is greater than 0, it is the process ID of
the child process that exited. If an error occurs, pid will be less than
zero and msg will contain a system-dependent error message.

238 GNU Octave

Built-in Function[err, msg] = fcntl (fid, request, arg)
Change the properties of the open file fid. The following values may
be passed as request:

F_DUPFD Return a duplicate file descriptor.

F_GETFD Return the file descriptor flags for fid.

F_SETFD Set the file descriptor flags for fid.

F_GETFL Return the file status flags for fid. The following codes
may be returned (some of the flags may be undefined on
some systems).

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

O_APPEND Append on each write.

O_NONBLOCK
Nonblocking mode.

O_SYNC Wait for writes to complete.

O_ASYNC Asynchronous I/O.

F_SETFL Set the file status flags for fid to the value specified by
arg. The only flags that can be changed are O_APPEND
and O_NONBLOCK.

If successful, err is 0 and msg is an empty string. Otherwise, err is
nonzero and msg contains a system-dependent error message.

29.4 Process, Group, and User IDs

Built-in Functiongetpgrp ()
Return the process group id of the current process.

Built-in Functiongetpid ()
Return the process id of the current process.

Built-in Functiongetppid ()
Return the process id of the parent process.

Chapter 29: System Utilities 239

Built-in Functiongeteuid ()
Return the effective user id of the current process.

Built-in Functiongetuid ()
Return the real user id of the current process.

Built-in Functiongetegid ()
Return the effective group id of the current process.

Built-in Functiongetgid ()
Return the real group id of the current process.

29.5 Environment Variables

Built-in Functiongetenv (var)
Return the value of the environment variable var. For example,

getenv ("PATH")

returns a string containing the value of your path.

Built-in Functionputenv (var, value)
Set the value of the environment variable var to value.

29.6 Current Working Directory

Commandcd dir
Commandchdir dir

Change the current working directory to dir. For example,
cd ~/octave

Changes the current working directory to ‘~/octave’. If the directory
does not exist, an error message is printed and the working directory
is not changed.

Built-in Functionpwd ()
Return the current working directory.

Commandls options
Commanddir options

List directory contents. For example,

240 GNU Octave

ls -l
� total 12
� -rw-r--r-- 1 jwe users 4488 Aug 19 04:02 foo.m
� -rw-r--r-- 1 jwe users 1315 Aug 17 23:14 bar.m

The dir and ls commands are implemented by calling your system’s
directory listing command, so the available options may vary from
system to system.

29.7 Password Database Functions

Octave’s password database functions return information in a struc-
ture with the following fields.

name The user name.

passwd The encrypted password, if available.

uid The numeric user id.

gid The numeric group id.

gecos The GECOS field.

dir The home directory.

shell The initial shell.

In the descriptions of the following functions, this data structure is
referred to as a pw struct.

Loadable Functionpw struct = getpwent ()
Return a structure containing an entry from the password database,
opening it if necessary. Once the end of the data has been reached,
getpwent returns 0.

Loadable Functionpw struct = getpwuid (uid).
Return a structure containing the first entry from the password
database with the user ID uid. If the user ID does not exist in the
database, getpwuid returns 0.

Loadable Functionpw struct = getpwnam (name)
Return a structure containing the first entry from the password
database with the user name name. If the user name does not ex-
ist in the database, getpwname returns 0.

Loadable Functionsetpwent ()
Return the internal pointer to the beginning of the password database.

Chapter 29: System Utilities 241

Loadable Functionendpwent ()
Close the password database.

29.8 Group Database Functions

Octave’s group database functions return information in a structure
with the following fields.

name The user name.

passwd The encrypted password, if available.

gid The numeric group id.

mem The members of the group.

In the descriptions of the following functions, this data structure is
referred to as a grp struct.

Loadable Functiongrp struct = getgrent ()
Return an entry from the group database, opening it if necessary. Once
the end of the data has been reached, getgrent returns 0.

Loadable Functiongrp struct = getgrgid (gid).
Return the first entry from the group database with the group ID gid.
If the group ID does not exist in the database, getgrgid returns 0.

Loadable Functiongrp struct = getgrnam (name)
Return the first entry from the group database with the group name
name. If the group name does not exist in the database, getgrname
returns 0.

Loadable Functionsetgrent ()
Return the internal pointer to the beginning of the group database.

Loadable Functionendgrent ()
Close the group database.

29.9 System Information

Built-in Functioncomputer ()
Print or return a string of the form cpu-vendor-os that identifies the
kind of computer Octave is running on. If invoked with an output
argument, the value is returned instead of printed. For example,

242 GNU Octave

computer ()
� i586-pc-linux-gnu

x = computer ()
⇒ x = "i586-pc-linux-gnu"

Built-in Functionisieee ()
Return 1 if your computer claims to conform to the IEEE standard for
floating point calculations.

Built-in Functionversion ()
Return Octave’s version number as a string. This is also the value of
the built-in variable OCTAVE_VERSION.

Built-in VariableOCTAVE VERSION
The version number of Octave, as a string.

Built-in Functionoctave config info ()
Return a structure containing configuration and installation informa-
tion.

Loadable Functiongetrusage ()
Return a structure containing a number of statistics about the current
Octave process. Not all fields are available on all systems. If it is
not possible to get CPU time statistics, the CPU time slots are set
to zero. Other missing data are replaced by NaN. Here is a list of
all the possible fields that can be present in the structure returned by
getrusage:

idrss Unshared data size.

inblock Number of block input operations.

isrss Unshared stack size.

ixrss Shared memory size.

majflt Number of major page faults.

maxrss Maximum data size.

minflt Number of minor page faults.

msgrcv Number of messages received.

msgsnd Number of messages sent.

Chapter 29: System Utilities 243

nivcsw Number of involuntary context switches.

nsignals Number of signals received.

nswap Number of swaps.

nvcsw Number of voluntary context switches.

oublock Number of block output operations.

stime A structure containing the system CPU time used. The
structure has the elements sec (seconds) usec (microsec-
onds).

utime A structure containing the user CPU time used. The
structure has the elements sec (seconds) usec (microsec-
onds).

244 GNU Octave

Appendix A: Tips and Standards 245

Appendix A Tips and Standards

This chapter describes no additional features of Octave. Instead it
gives advice on making effective use of the features described in the pre-
vious chapters.

A.1 Writing Clean Octave Programs

Here are some tips for avoiding common errors in writing Octave code
intended for widespread use:

• Since all global variables share the same name space, and all func-
tions share another name space, you should choose a short word to
distinguish your program from other Octave programs. Then take
care to begin the names of all global variables, constants, and func-
tions with the chosen prefix. This helps avoid name conflicts.

If you write a function that you think ought to be added to Oc-
tave under a certain name, such as fiddle_matrix, don’t call it by
that name in your program. Call it mylib_fiddle_matrix in your
program, and send mail to bug-octave@bevo.che.wisc.edu sug-
gesting that it be added to Octave. If and when it is, the name can
be changed easily enough.

If one prefix is insufficient, your package may use two or three alter-
native common prefixes, so long as they make sense.

Separate the prefix from the rest of the symbol name with an under-
score ‘_’. This will be consistent with Octave itself and with most
Octave programs.

• When you encounter an error condition, call the function error (or
usage). The error and usage functions do not return. See Sec-
tion 2.5 [Errors], page 31.

• Please put a copyright notice on the file if you give copies to any-
one. Use the same lines that appear at the top of the function files
distributed with Octave. If you have not signed papers to assign
the copyright to anyone else, then place your name in the copyright
notice.

A.2 Tips for Making Code Run Faster.

Here are some ways of improving the execution speed of Octave pro-
grams.

• Avoid looping wherever possible.

246 GNU Octave

• Use iteration rather than recursion whenever possible. Function calls
are slow in Octave.

• Avoid resizing matrices unnecessarily. When building a single result
matrix from a series of calculations, set the size of the result matrix
first, then insert values into it. Write

result = zeros (big_n, big_m)
for i = over:and_over
r1 = ...
r2 = ...
result (r1, r2) = new_value ();

endfor

instead of

result = [];
for i = ever:and_ever
result = [result, new_value()];

endfor

• Avoid calling eval or feval whenever possible, because they require
Octave to parse input or look up the name of a function in the symbol
table.

If you are using eval as an exception handling mechanism and not
because you need to execute some arbitrary text, use the try state-
ment instead. See Section 10.8 [The try Statement], page 99.

• If you are calling lots of functions but none of them will need to
change during your run, set the variable ignore_function_time_
stamp to "all" so that Octave doesn’t waste a lot of time checking
to see if you have updated your function files.

A.3 Tips for Documentation Strings

Here are some tips for the writing of documentation strings.

• Every command, function, or variable intended for users to know
about should have a documentation string.

• An internal variable or subroutine of an Octave program might as
well have a documentation string.

• The first line of the documentation string should consist of one or
two complete sentences that stand on their own as a summary.

The documentation string can have additional lines that expand on
the details of how to use the function or variable. The additional
lines should also be made up of complete sentences.

Appendix A: Tips and Standards 247

• For consistency, phrase the verb in the first sentence of a documen-
tation string as an infinitive with “to” omitted. For instance, use
“Return the frob of A and B.” in preference to “Returns the frob of
A and B.” Usually it looks good to do likewise for the rest of the
first paragraph. Subsequent paragraphs usually look better if they
have proper subjects.

• Write documentation strings in the active voice, not the passive, and
in the present tense, not the future. For instance, use “Return a list
containing A and B.” instead of “A list containing A and B will be
returned.”

• Avoid using the word “cause” (or its equivalents) unnecessarily. In-
stead of, “Cause Octave to display text in boldface,” write just “Dis-
play text in boldface.”

• Do not start or end a documentation string with whitespace.
• Format the documentation string so that it fits in an Emacs window

on an 80-column screen. It is a good idea for most lines to be no
wider than 60 characters.
However, rather than simply filling the entire documentation string,
you can make it much more readable by choosing line breaks with
care. Use blank lines between topics if the documentation string is
long.

• Do not indent subsequent lines of a documentation string so that the
text is lined up in the source code with the text of the first line. This
looks nice in the source code, but looks bizarre when users view the
documentation. Remember that the indentation before the starting
double-quote is not part of the string!

• The documentation string for a variable that is a yes-or-no flag should
start with words such as “Nonzero means. . . ”, to make it clear that
all nonzero values are equivalent and indicate explicitly what zero
and nonzero mean.

• When a function’s documentation string mentions the value of an
argument of the function, use the argument name in capital letters
as if it were a name for that value. Thus, the documentation string
of the operator / refers to its second argument as ‘DIVISOR’, because
the actual argument name is divisor.
Also use all caps for meta-syntactic variables, such as when you show
the decomposition of a list or vector into subunits, some of which may
vary.

A.4 Tips on Writing Comments

Here are the conventions to follow when writing comments.

248 GNU Octave

‘#’ Comments that start with a single sharp-sign, ‘#’, should all
be aligned to the same column on the right of the source
code. Such comments usually explain how the code on the
same line does its job. In the Emacs mode for Octave, the
M-; (indent-for-comment) command automatically inserts
such a ‘#’ in the right place, or aligns such a comment if it
is already present.

‘##’ Comments that start with two semicolons, ‘##’, should be
aligned to the same level of indentation as the code. Such
comments usually describe the purpose of the following lines
or the state of the program at that point.

The indentation commands of the Octave mode in Emacs, such as M-

; (indent-for-comment) and TAB (octave-indent-line) automatically
indent comments according to these conventions, depending on the num-
ber of semicolons. See section “Manipulating Comments” in The GNU
Emacs Manual.

A.5 Conventional Headers for Octave
Functions

Octave has conventions for using special comments in function files
to give information such as who wrote them. This section explains these
conventions.

The top of the file should contain a copyright notice, followed by a
block of comments that can be used as the help text for the function.
Here is an example:

Copyright (C) 1996, 1997 John W. Eaton

##

This file is part of Octave.

##

Octave is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public

License as published by the Free Software Foundation;

either version 2, or (at your option) any later version.

##

Octave is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied

warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU General Public License for more

details.

##

Appendix A: Tips and Standards 249

You should have received a copy of the GNU General Public

License along with Octave; see the file COPYING. If not,

write to the Free Software Foundation, 59 Temple Place -

Suite 330, Boston, MA 02111-1307, USA.

usage: [IN, OUT, PID] = popen2 (COMMAND, ARGS)

##

Start a subprocess with two-way communication. COMMAND

specifies the name of the command to start. ARGS is an

array of strings containing options for COMMAND. IN and

OUT are the file ids of the input and streams for the

subprocess, and PID is the process id of the subprocess,

or -1 if COMMAND could not be executed.

##

Example:

##

[in, out, pid] = popen2 ("sort", "-nr");

fputs (in, "these\nare\nsome\nstrings\n");

fclose (in);

while (isstr (s = fgets (out)))

fputs (stdout, s);

endwhile

fclose (out);

Octave uses the first block of comments in a function file that do not
appear to be a copyright notice as the help text for the file. For Octave
to recognize the first comment block as a copyright notice, it must match
the regular expression

^ Copyright (C).*\n\n This file is part of Octave.

or

^ Copyright (C).*\n\n This program is free softwar

(after stripping the leading comment characters). This is a fairly strict
requirement, and may be relaxed somewhat in the future.

After the copyright notice and help text come several header comment
lines, each beginning with ‘## header-name:’. For example,

Author: jwe
Keywords: subprocesses input-output
Maintainer: jwe

Here is a table of the conventional possibilities for header-name:

‘Author’ This line states the name and net address of at least the
principal author of the library.

250 GNU Octave

Author: John W. Eaton <jwe@bevo.che.wisc.edu>

‘Maintainer’
This line should contain a single name/address as in the Au-
thor line, or an address only, or the string ‘jwe’. If there is
no maintainer line, the person(s) in the Author field are pre-
sumed to be the maintainers. The example above is mildly
bogus because the maintainer line is redundant.
The idea behind the ‘Author’ and ‘Maintainer’ lines is to
make possible a function to “send mail to the maintainer”
without having to mine the name out by hand.
Be sure to surround the network address with ‘<...>’ if you
include the person’s full name as well as the network address.

‘Created’ This optional line gives the original creation date of the file.
For historical interest only.

‘Version’ If you wish to record version numbers for the individual Oc-
tave program, put them in this line.

‘Adapted-By’
In this header line, place the name of the person who adapted
the library for installation (to make it fit the style conven-
tions, for example).

‘Keywords’ This line lists keywords. Eventually, it will be used by an
apropos command to allow people will find your package
when they’re looking for things by topic area. To separate
the keywords, you can use spaces, commas, or both.

Just about every Octave function ought to have the ‘Author’ and
‘Keywords’ header comment lines. Use the others if they are appropri-
ate. You can also put in header lines with other header names—they
have no standard meanings, so they can’t do any harm.

Appendix B: Known Causes of Trouble 251

Appendix B Known Causes of
Trouble

This section describes known problems that affect users of Octave.
Most of these are not Octave bugs per se—if they were, we would fix
them. But the result for a user may be like the result of a bug.

Some of these problems are due to bugs in other software, some are
missing features that are too much work to add, and some are places
where people’s opinions differ as to what is best.

B.1 Actual Bugs We Haven’t Fixed Yet

• Output that comes directly from Fortran functions is not sent
through the pager and may appear out of sequence with other out-
put that is sent through the pager. One way to avoid this is to
force pending output to be flushed before calling a function that will
produce output from within Fortran functions. To do this, use the
command

fflush (stdout)

Another possible workaround is to use the command
page_screen_output = "false"

to turn the pager off.
• If you get messages like

Input line too long

when trying to plot many lines on one graph, you have probably gen-
erated a plot command that is too larger for gnuplot’s fixed-length
buffer for commands. Splitting up the plot command doesn’t help
because replot is implemented in gnuplot by simply appending the
new plotting commands to the old command line and then evaluating
it again.
You can demonstrate this ‘feature’ by running gnuplot and doing
something like

plot sin (x), sin (x), ... lots more ..., sin (x)

and then
replot sin (x), sin (x), ... lots more ..., sin (x)

after repeating the replot command a few times, gnuplot will give
you an error.
Also, it doesn’t help to use backslashes to enter a plot command over
several lines, because the limit is on the overall command line length,
once the backslashed lines are all pasted together.

252 GNU Octave

Because of this, Octave tries to use as little of the command-line
length as possible by using the shortest possible abbreviations for all
the plot commands and options. Unfortunately, the length of the
temporary file names is probably what is taking up the most space
on the command line.

You can buy a little bit of command line space by setting the envi-
ronment variable TMPDIR to be "." before starting Octave, or you can
increase the maximum command line length in gnuplot by changing
the following limits in the file plot.h in the gnuplot distribution and
recompiling gnuplot.

#define MAX_LINE_LEN 32768 /* originally 1024 */
#define MAX_TOKENS 8192 /* originally 400 */

Of course, this doesn’t really fix the problem, but it does make it
much less likely that you will run into trouble unless you are putting
a very large number of lines on a given plot.

A list of ideas for future enhancements is distributed with Octave. See
the file ‘PROJECTS’ in the top level directory in the source distribution.

B.2 Reporting Bugs

Your bug reports play an essential role in making Octave reliable.
When you encounter a problem, the first thing to do is to see if it is

already known. See Appendix B [Trouble], page 251. If it isn’t known,
then you should report the problem.

Reporting a bug may help you by bringing a solution to your problem,
or it may not. In any case, the principal function of a bug report is to
help the entire community by making the next version of Octave work
better. Bug reports are your contribution to the maintenance of Octave.

In order for a bug report to serve its purpose, you must include the
information that makes it possible to fix the bug.

If you have Octave working at all, the easiest way to prepare a complete
bug report is to use the Octave function bug_report. When you execute
this function, Octave will prompt you for a subject and then invoke the
editor on a file that already contains all the configuration information.
When you exit the editor, Octave will mail the bug report for you.

B.3 Have You Found a Bug?

If you are not sure whether you have found a bug, here are some
guidelines:

Appendix B: Known Causes of Trouble 253

• If Octave gets a fatal signal, for any input whatever, that is a bug.
Reliable interpreters never crash.

• If Octave produces incorrect results, for any input whatever, that is
a bug.

• Some output may appear to be incorrect when it is in fact due to a
program whose behavior is undefined, which happened by chance to
give the desired results on another system. For example, the range
operator may produce different results because of differences in the
way floating point arithmetic is handled on various systems.

• If Octave produces an error message for valid input, that is a bug.

• If Octave does not produce an error message for invalid input, that
is a bug. However, you should note that your idea of “invalid in-
put” might be my idea of “an extension” or “support for traditional
practice”.

• If you are an experienced user of programs like Octave, your sugges-
tions for improvement are welcome in any case.

B.4 Where to Report Bugs

If you have Octave working at all, the easiest way to prepare a complete
bug report is to use the Octave function bug_report. When you execute
this function, Octave will prompt you for a subject and then invoke the
editor on a file that already contains all the configuration information.
When you exit the editor, Octave will mail the bug report for you.

If for some reason you cannot use Octave’s bug_report function, send
bug reports for Octave to bug-octave@bevo.che.wisc.edu.

Do not send bug reports to ‘help-octave’. Most users of Octave do
not want to receive bug reports. Those that do have asked to be on the
mailing list.

As a last resort, send bug reports on paper to:
Octave Bugs c/o John W. Eaton
University of Wisconsin-Madison
Department of Chemical Engineering
1415 Engineering Drive
Madison, Wisconsin 53706 USA

B.5 How to Report Bugs

Send bug reports for Octave to one of the addresses listed in Sec-
tion B.4 [Bug Lists], page 253.

254 GNU Octave

The fundamental principle of reporting bugs usefully is this: report
all the facts. If you are not sure whether to state a fact or leave it out,
state it!

Often people omit facts because they think they know what causes
the problem and they conclude that some details don’t matter. Thus, you
might assume that the name of the variable you use in an example does not
matter. Well, probably it doesn’t, but one cannot be sure. Perhaps the
bug is a stray memory reference which happens to fetch from the location
where that name is stored in memory; perhaps, if the name were different,
the contents of that location would fool the interpreter into doing the right
thing despite the bug. Play it safe and give a specific, complete example.

Keep in mind that the purpose of a bug report is to enable someone
to fix the bug if it is not known. Always write your bug reports on the
assumption that the bug is not known.

Sometimes people give a few sketchy facts and ask, “Does this ring a
bell?” This cannot help us fix a bug. It is better to send a complete bug
report to begin with.

Try to make your bug report self-contained. If we have to ask you for
more information, it is best if you include all the previous information in
your response, as well as the information that was missing.

To enable someone to investigate the bug, you should include all these
things:

• The version of Octave. You can get this by noting the version number
that is printed when Octave starts, or running it with the ‘-v’ option.

• A complete input file that will reproduce the bug.

A single statement may not be enough of an example—the bug might
depend on other details that are missing from the single statement
where the error finally occurs.

• The command arguments you gave Octave to execute that exam-
ple and observe the bug. To guarantee you won’t omit something
important, list all the options.

If we were to try to guess the arguments, we would probably guess
wrong and then we would not encounter the bug.

• The type of machine you are using, and the operating system name
and version number.

• The command-line arguments you gave to the configure command
when you installed the interpreter.

• A complete list of any modifications you have made to the interpreter
source.

Be precise about these changes—show a context diff for them.

Appendix B: Known Causes of Trouble 255

• Details of any other deviations from the standard procedure for in-
stalling Octave.

• A description of what behavior you observe that you believe is in-
correct. For example, "The interpreter gets a fatal signal," or, "The
output produced at line 208 is incorrect."
Of course, if the bug is that the interpreter gets a fatal signal, then
one can’t miss it. But if the bug is incorrect output, we might not
notice unless it is glaringly wrong.
Even if the problem you experience is a fatal signal, you should still
say so explicitly. Suppose something strange is going on, such as,
your copy of the interpreter is out of synch, or you have encountered
a bug in the C library on your system. Your copy might crash and
the copy here would not. If you said to expect a crash, then when
the interpreter here fails to crash, we would know that the bug was
not happening. If you don’t say to expect a crash, then we would
not know whether the bug was happening. We would not be able to
draw any conclusion from our observations.
Often the observed symptom is incorrect output when your program
is run. Unfortunately, this is not enough information unless the
program is short and simple. It is very helpful if you can include an
explanation of the expected output, and why the actual output is
incorrect.

• If you wish to suggest changes to the Octave source, send them as
context diffs. If you even discuss something in the Octave source,
refer to it by context, not by line number, because the line numbers in
the development sources probably won’t match those in your sources.

Here are some things that are not necessary:

• A description of the envelope of the bug.
Often people who encounter a bug spend a lot of time investigating
which changes to the input file will make the bug go away and which
changes will not affect it. Such information is usually not necessary to
enable us to fix bugs in Octave, but if you can find a simpler example
to report instead of the original one, that is a convenience. Errors
in the output will be easier to spot, running under the debugger will
take less time, etc. Most Octave bugs involve just one function, so
the most straightforward way to simplify an example is to delete all
the function definitions except the one in which the bug occurs.
However, simplification is not vital; if you don’t want to do this,
report the bug anyway and send the entire test case you used.

• A patch for the bug. Patches can be helpful, but if you find a bug,
you should report it, even if you cannot send a fix for the problem.

256 GNU Octave

B.6 Sending Patches for Octave

If you would like to write bug fixes or improvements for Octave, that is
very helpful. When you send your changes, please follow these guidelines
to avoid causing extra work for us in studying the patches.

If you don’t follow these guidelines, your information might still be
useful, but using it will take extra work. Maintaining Octave is a lot of
work in the best of circumstances, and we can’t keep up unless you do
your best to help.
• Send an explanation with your changes of what problem they fix or

what improvement they bring about. For a bug fix, just include a
copy of the bug report, and explain why the change fixes the bug.

• Always include a proper bug report for the problem you think you
have fixed. We need to convince ourselves that the change is right
before installing it. Even if it is right, we might have trouble judging
it if we don’t have a way to reproduce the problem.

• Include all the comments that are appropriate to help people reading
the source in the future understand why this change was needed.

• Don’t mix together changes made for different reasons. Send them
individually.
If you make two changes for separate reasons, then we might not
want to install them both. We might want to install just one.

• Use ‘diff -c’ to make your diffs. Diffs without context are hard for
us to install reliably. More than that, they make it hard for us to
study the diffs to decide whether we want to install them. Unidiff
format is better than contextless diffs, but not as easy to read as ‘-c’
format.
If you have GNU diff, use ‘diff -cp’, which shows the name of the
function that each change occurs in.

• Write the change log entries for your changes.
Read the ‘ChangeLog’ file to see what sorts of information to put in,
and to learn the style that we use. The purpose of the change log
is to show people where to find what was changed. So you need to
be specific about what functions you changed; in large functions, it’s
often helpful to indicate where within the function the change was
made.
On the other hand, once you have shown people where to find the
change, you need not explain its purpose. Thus, if you add a new
function, all you need to say about it is that it is new. If you feel that
the purpose needs explaining, it probably does—but the explanation
will be much more useful if you put it in comments in the code.

Appendix B: Known Causes of Trouble 257

If you would like your name to appear in the header line for who
made the change, send us the header line.

B.7 How To Get Help with Octave

The mailing list help-octave@bevo.che.wisc.edu exists for the dis-
cussion of matters related to using and installing Octave. If would
like to join the discussion, please send a short note to help-octave-
request@bevo.che.wisc.edu.

Please do not send requests to be added or removed from the mailing
list, or other administrative trivia to the list itself.

If you think you have found a bug in the installation procedure,
however, you should send a complete bug report for the problem to
bug-octave@bevo.che.wisc.edu. See Section B.5 [Bug Reporting],
page 253 for information that will help you to submit a useful report.

258 GNU Octave

Appendix C: Installing Octave 259

Appendix C Installing Octave

Here is the procedure for installing Octave from scratch on a Unix
system. For instructions on how to install the binary distributions of
Octave, see Section C.3 [Binary Distributions], page 266.

• Run the shell script ‘configure’. This will determine the features
your system has (or doesn’t have) and create a file named ‘Makefile’
from each of the files named ‘Makefile.in’.

Here is a summary of the configure options that are most frequently
used when building Octave:

--prefix=prefix
Install Octave in subdirectories below prefix. The de-
fault value of prefix is ‘/usr/local’.

--srcdir=dir
Look for Octave sources in the directory dir.

--with-f2c
Use f2c even if a Fortran compiler is available.

--with-g77
Use g77 to compile Fortran code.

--enable-shared
Create shared libraries. If you are planning to use -
-enable-lite-kernelel or the dynamic loading fea-
tures, you will probably want to use this option. It will
make your ‘.oct’ files much smaller and on some sys-
tems it may be necessary to build shared libraries in
order to use dynamically linked functions.

You may also want to build a shared version of
libstdc++, if your system doesn’t already have one.
Note that a patch is needed to build shared versions of
version 2.7.2 of libstdc++ on the HP-PA architecture.
You can find the patch at ftp://ftp.cygnus.com/
pub/g++/libg++-2.7.2-hppa-gcc-fix.

--enable-dl
Use dlopen and friends to make Octave capable of dy-
namically linking externally compiled functions. This
only works on systems that actually have these func-
tions. If you plan on using this feature, you should
probably also use --enable-shared to reduce the size
of your ‘.oct’ files.

260 GNU Octave

--enable-shl
Use shl_load and friends to make Octave capable
of dynamically linking externally compiled functions.
This only works on systems that actually have these
functions (only HP-UX systems). If you plan on using
this feature, you should probably also use --enable-
shared to reduce the size of your ‘.oct’ files.

--enable-lite-kernel
Compile smaller kernel. This currently requires the dy-
namic linking functions dlopen or shl_load and friends
so that Octave can load functions at run time that are
not loaded at compile time.

--help Print a summary of the options recognized by the con-
figure script.

See the file ‘INSTALL’ for more information about the command line
options used by configure. That file also contains instructions for
compiling in a directory other than where the source is located.

• Run make.
You will need a recent version of GNU Make. Modifying Octave’s
makefiles to work with other make programs is probably not worth
your time. We recommend you get and compile GNU Make instead.
For plotting, you will need to have gnuplot installed on your system.
Gnuplot is a command-driven interactive function plotting program.
Gnuplot is copyrighted, but freely distributable. The ‘gnu’ in gnuplot
is a coincidence—it is not related to the GNU project or the FSF in
any but the most peripheral sense.
To compile Octave, you will need a recent version of GNU Make.
You will also need g++ 2.7.2 or later. Version 2.8.0 or egcs 1.0.x
should work. Later versions may work, but C++ is still evolving, so
don’t be too surprised if you run into some trouble.
It is no longer necessary to have libg++, but you do need to have
the GNU implementation of libstdc++. If you are using g++ 2.7.2,
libstdc++ is distributed along with libg++, but for later versions,
libstdc++ is distributed separately. For egcs, libstdc++ is included
with the compiler distribution.
If you plan to modify the parser you will also need GNU bison and
flex. If you modify the documentation, you will need GNU Texinfo,
along with the patch for the makeinfo program that is distributed
with Octave.
GNUMake, gcc, and libstdc++, gnuplot, bison, flex, and Texinfo
are all available from many anonymous ftp archives. The primary

Appendix C: Installing Octave 261

site is ftp.gnu.org, but it is often very busy. A list of sites that
mirror the software on ftp.gnu.org is available by anonymous ftp
from ftp://ftp.gnu.org/pub/gnu/GNUinfo/FTP.
If you don’t have a Fortran compiler, or if your Fortran compiler
doesn’t work like the traditional Unix f77, you will need to have the
Fortran to C translator f2c. You can get f2c from any number of
anonymous ftp archives. The most recent version of f2c is always
available from netlib.att.com.
On an otherwise idle Pentium 133 running Linux, it will take some-
where between 1-1/2 to 3 hours to compile everything, depending on
whether you are building shared libraries. You will need about 100
megabytes of disk storage to work with (considerably less if you don’t
compile with debugging symbols). To do that, use the command

make CFLAGS=-O CXXFLAGS=-O LDFLAGS=

instead of just ‘make’.
• If you encounter errors while compiling Octave, first check the list

of known problems below to see if there is a workaround or solution
for your problem. If not, see Appendix B [Trouble], page 251, for
information about how to report bugs.

• Once you have successfully compiled Octave, run ‘make install’.
This will install a copy of octave, its libraries, and its documenta-
tion in the destination directory. As distributed, Octave is installed
in the following directories. In the table below, prefix defaults to
‘/usr/local’, version stands for the current version number of the
interpreter, and arch is the type of computer on which Octave is
installed (for example, ‘i586-unknown-gnu’).

‘prefix/bin’
Octave and other binaries that people will want to run
directly.

‘prefix/lib’
Libraries like libcruft.a and liboctave.a.

‘prefix/share’
Architecture-independent data files.

‘prefix/include/octave’
Include files distributed with Octave.

‘prefix/man/man1’
Unix-style man pages describing Octave.

‘prefix/info’
Info files describing Octave.

262 GNU Octave

‘prefix/share/octave/version/m’
Function files distributed with Octave. This includes
the Octave version, so that multiple versions of Octave
may be installed at the same time.

‘prefix/lib/octave/version/exec/arch’
Executables to be run by Octave rather than the user.

‘prefix/lib/octave/version/oct/arch’
Object files that will be dynamically loaded.

‘prefix/share/octave/version/imagelib’
Image files that are distributed with Octave.

C.1 Notes

• You must use the version of GNU Info distributed with Octave, be-
cause it includes some changes to allow Octave to search the indices of
the info files. If you would like, you should be able to replace other
copies of the Info browser that you have with the one distributed
with Octave. Patches relative to a recent release of the GNU Info
browser are included in the file ‘INFO.PATCH’ in the Octave source
distribution. This modification has been submitted to the GNU Info
maintainer, and should appear in some future release. Once that
happens, the GNU Info browser will no longer be distributed with
Octave.

C.2 Installation Problems

This section contains a list of problems (and some apparent problems
that don’t really mean anything is wrong) that may show up during in-
stallation of Octave.

• On some SCO systems, info fails to compile if HAVE_TERMIOS_
H is defined int ‘config.h’. Simply removing the definition from
‘info/config.h’ should allow it to compile.

• If configure finds dlopen, dlsym, dlclose, and dlerror, but not
the header file ‘dlfcn.h’, you need to find the source for the header
file and install it in the directory ‘usr/include’. This is reportedly
a problem with Slackware 3.1. For Linux/GNU systems, the source
for ‘dlfcn.h’ is in the ldso package.

• Building ‘.oct’ files doesn’t work.

You should probably have a shared version of libstdc++. A patch is
needed to build shared versions of version 2.7.2 of libstdc++ on the

Appendix C: Installing Octave 263

HP-PA architecture. You can find the patch at ftp://ftp.cygnus.
com/pub/g++/libg++-2.7.2-hppa-gcc-fix.

• On some alpha systems there may be a problem with the libdxml
library, resulting in floating point errors and/or segmentation faults
in the linear algebra routines called by Octave. If you encounter
such problems, then you should modify the configure script so that
SPECIAL_MATH_LIB is not set to -ldxml.

• On FreeBSD systems Octave may hang while initializing some inter-
nal constants. The fix appears to be to use

options GPL_MATH_EMULATE

rather than

options MATH_EMULATE

in the kernel configuration files (typically found in the directory
‘/sys/i386/conf’. After making this change, you’ll need to rebuild
the kernel, install it, and reboot.

• If you encounter errors like

passing ‘void (*)()’ as argument 2 of

‘octave_set_signal_handler(int, void (*)(int))’

or

warning: ANSI C++ prohibits conversion from

‘(int)’ to ‘(...)’

while compiling ‘sighandlers.cc’, you may need to edit some files in
the gcc include subdirectory to add proper prototypes for functions
there. For example, Ultrix 4.2 needs proper declarations for the
signal function and the SIG_IGN macro in the file ‘signal.h’.
On some systems the SIG_IGN macro is defined to be something like
this:

#define SIG_IGN (void (*)())1

when it should really be something like:

#define SIG_IGN (void (*)(int))1

to match the prototype declaration for the signal function. This
change should also be made for the SIG_DFL and SIG_ERR symbols.
It may be necessary to change the definitions in ‘sys/signal.h’ as
well.
The gcc fixincludes and fixproto scripts should probably fix
these problems when gcc installs its modified set of header files,
but I don’t think that’s been done yet.
You should not change the files in ‘/usr/include’. You can find the
gcc include directory tree by running the command

264 GNU Octave

gcc -print-libgcc-file-name

The directory of gcc include files normally begins in the same direc-
tory that contains the file ‘libgcc.a’.

• There is a bug with the makeinfo program that is distributed with
Texinfo (through version 3.9) that causes the indices in Octave’s on-
line manual to be generated incorrectly. If you need to recreate the
on-line documentation, you should get the makeinfo program that is
distributed with texinfo-3.9 and apply the patch for makeinfo that
is distributed with Octave. See the file ‘MAKEINFO.PATCH’ for more
details.

• Some of the Fortran subroutines may fail to compile with older ver-
sions of the Sun Fortran compiler. If you get errors like

zgemm.f:

zgemm:

warning: unexpected parent of complex expression subtree

zgemm.f, line 245: warning: unexpected parent of complex

expression subtree

warning: unexpected parent of complex expression subtree

zgemm.f, line 304: warning: unexpected parent of complex

expression subtree

warning: unexpected parent of complex expression subtree

zgemm.f, line 327: warning: unexpected parent of complex

expression subtree

pcc_binval: missing IR_CONV in complex op

make[2]: *** [zgemm.o] Error 1

when compiling the Fortran subroutines in the ‘libcruft’ subdirec-
tory, you should either upgrade your compiler or try compiling with
optimization turned off.

• On NeXT systems, if you get errors like this:

/usr/tmp/cc007458.s:unknown:Undefined local symbol LBB7656

/usr/tmp/cc007458.s:unknown:Undefined local symbol LBE7656

when compiling ‘Array.cc’ and ‘Matrix.cc’, try recompiling these
files without -g.

• Some people have reported that calls to shell cmd and the pager
do not work on SunOS systems. This is apparently due to hav-
ing G_HAVE_SYS_WAIT defined to be 0 instead of 1 when compiling
libstdc++.

• On NeXT systems, linking to ‘libsys_s.a’ may fail to resolve the
following functions

_tcgetattr

Appendix C: Installing Octave 265

_tcsetattr
_tcflow

which are part of ‘libposix.a’. Unfortunately, linking Octave with
-posix results in the following undefined symbols.

.destructors_used

.constructors_used
_objc_msgSend
_NXGetDefaultValue
_NXRegisterDefaults
.objc_class_name_NXStringTable
.objc_class_name_NXBundle

One kluge around this problem is to extract ‘termios.o’ from
‘libposix.a’, put it in Octave’s ‘src’ directory, and add it to the
list of files to link together in the makefile. Suggestions for better
ways to solve this problem are welcome!

• If Octave crashes immediately with a floating point exception, it is
likely that it is failing to initialize the IEEE floating point values for
infinity and NaN.

If your system actually does support IEEE arithmetic, you should
be able to fix this problem by modifying the function octave_ieee_
init in the file ‘lo-ieee.cc’ to correctly initialize Octave’s internal
infinity and NaN variables.

If your system does not support IEEE arithmetic but Octave’s config-
ure script incorrectly determined that it does, you can work around
the problem by editing the file ‘config.h’ to not define HAVE_ISINF,
HAVE_FINITE, and HAVE_ISNAN.

In any case, please report this as a bug since it might be possible to
modify Octave’s configuration script to automatically determine the
proper thing to do.

• After installing the binary distribution of Octave in an alternate
directory, the Emacs command run-octave doesn’t work. Emacs
hangs in accept-process-output in inferior-octave-startup.

This seems to be a problem with executing a shell script using the
comint package. You can avoid the problem by changing the way
Octave is installed to eliminate the need for the shell script. You
can either compile and install Octave using the source distribution,
reinstall the binary distribution in the default directory, or copy the
commands in the octave shell script wrapper to your shell startup
files (and the shell startup files for anyone else who is using Octave)
and then rename the file ‘octave.bin’ to be ‘octave’.

266 GNU Octave

C.3 Binary Distributions

Although Octave is not very difficult to build from its sources, it is a
relatively large program that does require a significant amount of time and
disk space to compile and install. Because of this, many people want to
be able to obtain binary distributions so they can start using Octave im-
mediately, without having to bother with the details of compiling it first.
This is understandable, so I try to maintain a current collection of binary
distributions at ftp://ftp.che.wisc.edu/pub/octave/BINARIES.

Please understand, however, that there is only a limited amount
of time available to devote to making binaries, so binaries may
not be immediately available for some platforms. (Please contact
bug-octave@bevo.che.wisc.edu if you are interested in helping make a
binary distribution available for your system.)

C.3.1 Installing Octave from a Binary
Distribution

To install Octave from a binary distribution, execute the command
sh ./install-octave

in the top level directory of the distribution.
Binary distributions are normally compiled assuming that Octave will

be installed in the following subdirectories of ‘/usr/local’.

‘bin’ Octave and other binaries that people will want to run di-
rectly.

‘lib’ Shared libraries that Octave needs in order to run. These
files are not included if you are installing a statically linked
version of Octave.

‘man/man1’ Unix-style man pages describing Octave.

‘info’ Info files describing Octave.

‘share/octave/version/m’
Function files distributed with Octave. This includes the
Octave version, so that multiple versions of Octave may be
installed at the same time.

‘libexec/octave/version/exec/arch’
Executables to be run by Octave rather than the user.

‘libexec/octave/version/oct/arch’
Object files that will be dynamically loaded.

‘share/octave/version/imagelib’
Image files that are distributed with Octave.

Appendix C: Installing Octave 267

where version stands for the current version number of the interpreter, and
arch is the type of computer on which Octave is installed (for example,
‘i586-pc-linux-gnu’).

If these directories don’t exist, the script install-octave will create
them for you. The installation script also creates the following subdirec-
tories of ‘/usr/local’ that are intended for locally installed functions:

‘share/octave/site/m’
Locally installed M-files.

‘libexec/octave/site/exec/arch’
Locally installed binaries intended to be run by Octave
rather than by the user.

‘libexec/octave/site/octave/arch’
Local object files that will be dynamically linked.

If it is not possible for you to install Octave in ‘/usr/local’, or if you
would prefer to install it in a different directory, you can specify the name
of the top level directory as an argument to the ‘install-octave’ script.
For example:

sh ./install-octave /some/other/directory

will install Octave in subdirectories of the directory
‘/some/other/directory’.

C.3.2 Creating a Binary Distribution

Here is how to build a binary distribution for others to use. If you
want to make a binary distribution for your system available along with
the Octave sources and binaries on ftp.che.wisc.edu, please follow this
procedure. For directions explaining how to make the binary available on
the ftp site, please contact bug-octave@bevo.che.wisc.edu.
• Unpack the source distribution:

gunzip -c octave-2.0.13.tar.gz | tar xf -

• Change your current directory to the top-level directory of the source
distribution:

cd octave-2.0.13

• Make the binary distribution:

make binary-dist

This will create a compressed tar file ready for distribution. It will
have a name like ‘octave-2.0.13-i586-pc-linux-gnu.tar.gz’

268 GNU Octave

Appendix D: Emacs Octave Support 269

Appendix D Emacs Octave Support

The development of Octave code can greatly be facilitated using Emacs
with Octave mode, a major mode for editing Octave files which can e.g.
automatically indent the code, do some of the typing (with Abbrev mode)
and show keywords, comments, strings, etc. in different faces (with Font-
lock mode on devices that support it).

It is also possible to run Octave from within Emacs, either by directly
entering commands at the prompt in a buffer in Inferior Octave mode, or
by interacting with Octave from within a file with Octave code. This is
useful in particular for debugging Octave code.

Finally, you can convince Octave to use the Emacs info reader for help
-i.

All functionality is provided by the Emacs Lisp package EOS (for
“Emacs Octave Support”). This chapter describes how to set up and use
this package.

Please contact <Kurt.Hornik@ci.tuwien.ac.at> if you have any ques-
tions or suggestions on using EOS.

D.1 Installing EOS

The Emacs package EOS consists of the three files ‘octave-mod.el’,
‘octave-inf.el’, and ‘octave-hlp.el’. These files, or better yet their
byte-compiled versions, should be somewhere in your Emacs load-path.

If you have GNU Emacs with a version number at least as high as
19.35, you are all set up, because EOS is respectively will be part of GNU
Emacs as of version 19.35.

Otherwise, copy the three files from the ‘emacs’ subdirectory of the
Octave distribution to a place where Emacs can find them (this depends
on how your Emacs was installed). Byte-compile them for speed if you
want.

D.2 Using Octave Mode

If you are lucky, your sysadmins have already arranged everything so
that Emacs automatically goes into Octave mode whenever you visit an
Octave code file as characterized by its extension ‘.m’. If not, proceed as
follows.

1. To begin using Octave mode for all ‘.m’ files you visit, add the fol-
lowing lines to a file loaded by Emacs at startup time, typically your
‘~/.emacs’ file:

270 GNU Octave

(autoload ’octave-mode "octave-mod" nil t)
(setq auto-mode-alist

(cons ’("\\.m$" . octave-mode) auto-mode-alist))

2. Finally, to turn on the abbrevs, auto-fill and font-lock features au-
tomatically, also add the following lines to one of the Emacs startup
files:

(add-hook ’octave-mode-hook
(lambda ()
(abbrev-mode 1)
(auto-fill-mode 1)
(if (eq window-system ’x)

(font-lock-mode 1))))

See the Emacs manual for more information about how to customize
Font-lock mode.

In Octave mode, the following special Emacs commands can be used
in addition to the standard Emacs commands.

C-h m Describe the features of Octave mode.

LFD Reindent the current Octave line, insert a newline and in-
dent the new line (octave-reindent-then-newline-and-
indent). An abbrev before point is expanded if abbrev-
mode is non-nil.

TAB Indents current Octave line based on its contents and on
previous lines (indent-according-to-mode).

; Insert an “electric” semicolon (octave-electric-semi). If
octave-auto-indent is non-nil, reindent the current line.
If octave-auto-newline is non-nil, automagically insert a
newline and indent the new line.

‘ Start entering an abbreviation (octave-abbrev-start). If
Abbrev mode is turned on, typing ‘C-h or ‘? lists all ab-
brevs. Any other key combination is executed normally.
Note that all Octave abbrevs start with a grave accent.

M-LFD Break line at point and insert continuation marker and align-
ment (octave-split-line).

M-TAB Perform completion on Octave symbol preceding point, com-
paring that symbol against Octave’s reserved words and
builtin variables (octave-complete-symbol).

M-C-a Move backward to the beginning of a function (octave-
beginning-of-defun). With prefix argument N, do it that

Appendix D: Emacs Octave Support 271

many times if N is positive; otherwise, move forward to the
N-th following beginning of a function.

M-C-e Move forward to the end of a function (octave-end-of-
defun). With prefix argument N, do it that many times if N
is positive; otherwise, move back to the N-th preceding end
of a function.

M-C-h Puts point at beginning and mark at the end of the current
Octave function, i.e., the one containing point or following
point (octave-mark-defun).

M-C-q Properly indents the Octave function which contains point
(octave-indent-defun).

M-; If there is no comment already on this line, create a code-
level comment (started by two comment characters) if the
line is empty, or an in-line comment (started by one com-
ment character) otherwise (octave-indent-for-comment).
Point is left after the start of the comment which is properly
aligned.

C-c ; Puts the comment character ‘#’ (more precisely, the string
value of octave-comment-start) at the beginning of every
line in the region (octave-comment-region). With just C-u
prefix argument, uncomment each line in the region. A nu-
meric prefix argument N means use N comment characters.

C-c : Uncomments every line in the region (octave-uncomment-
region).

C-c C-p Move one line of Octave code backward, skipping empty and
comment lines (octave-previous-code-line). With nu-
meric prefix argument N, move that many code lines back-
ward (forward if N is negative).

C-c C-n Move one line of Octave code forward, skipping empty and
comment lines (octave-next-code-line). With numeric
prefix argument N, move that many code lines forward
(backward if N is negative).

C-c C-a Move to the ‘real’ beginning of the current line (octave-
beginning-of-line). If point is in an empty or comment
line, simply go to its beginning; otherwise, move backwards
to the beginning of the first code line which is not inside a
continuation statement, i.e., which does not follow a code
line ending in ‘...’ or ‘\’, or is inside an open parenthesis
list.

272 GNU Octave

C-c C-e Move to the ‘real’ end of the current line (octave-end-of-
line). If point is in a code line, move forward to the end of
the first Octave code line which does not end in ‘...’ or ‘\’
or is inside an open parenthesis list. Otherwise, simply go
to the end of the current line.

C-c M-C-n Move forward across one balanced begin-end block of Octave
code (octave-forward-block). With numeric prefix argu-
ment N, move forward across n such blocks (backward if N
is negative).

C-c M-C-p Move back across one balanced begin-end block of Octave
code (octave-backward-block). With numeric prefix argu-
ment N, move backward across N such blocks (forward if N
is negative).

C-c M-C-d Move forward down one begin-end block level of Octave code
(octave-down-block). With numeric prefix argument, do
it that many times; a negative argument means move back-
ward, but still go down one level.

C-c M-C-u Move backward out of one begin-end block level of Octave
code (octave-backward-up-block). With numeric prefix
argument, do it that many times; a negative argument means
move forward, but still to a less deep spot.

C-c M-C-h Put point at the beginning of this block, mark at the end
(octave-mark-block). The block marked is the one that
contains point or follows point.

C-c] Close the current block on a separate line (octave-close-
block). An error is signaled if no block to close is found.

C-c f Insert a function skeleton, prompting for the function’s
name, arguments and return values which have to be en-
tered without parens (octave-insert-defun).

C-c C-h Search the function, operator and variable indices of all info
files with documentation for Octave for entries (octave-
help). If used interactively, the entry is prompted for with
completion. If multiple matches are found, one can cycle
through them using the standard ‘,’ (Info-index-next)
command of the Info reader.
The variable octave-help-files is a list of files to search
through and defaults to ’("octave"). If there is also
an Octave Local Guide with corresponding info file, say,
‘octave-LG’, you can have octave-help search both files
by

Appendix D: Emacs Octave Support 273

(setq octave-help-files ’("octave" "octave-LG"))

in one of your Emacs startup files.

A common problem is that the 〈RET〉 key does not indent the line
to where the new text should go after inserting the newline. This is
because the standard Emacs convention is that 〈RET〉 (aka C-m) just adds
a newline, whereas 〈LFD〉 (aka C-j) adds a newline and indents it. This
is particularly inconvenient for users with keyboards which do not have a
special 〈LFD〉 key at all; in such cases, it is typically more convenient to
use 〈RET〉 as the 〈LFD〉 key (rather than typing C-j).

You can make 〈RET〉 do this by adding
(define-key octave-mode-map "\C-m"
’octave-reindent-then-newline-and-indent)

to one of your Emacs startup files. Another, more generally applicable
solution is

(defun RET-behaves-as-LFD ()
(let ((x (key-binding "\C-j")))

(local-set-key "\C-m" x)))
(add-hook ’octave-mode-hook ’RET-behaves-as-LFD)

(this works for all modes by adding to the startup hooks, without having
to know the particular binding of 〈RET〉 in that mode!). Similar con-
siderations apply for using 〈M-RET〉 as 〈M-LFD〉. As Barry A. Warsaw
<bwarsaw@cnri.reston.va.us> says in the documentation for his cc-mode,
“This is a very common question. :-) If you want this to be the default
behavior, don’t lobby me, lobby RMS!”

The following variables can be used to customize Octave mode.

octave-auto-indent
Non-nil means auto-indent the current line after a semi-
colon or space. Default is nil.

octave-auto-newline
Non-nil means auto-insert a newline and indent after semi-
colons are typed. The default value is nil.

octave-blink-matching-block
Non-nilmeans show matching begin of block when inserting
a space, newline or ‘;’ after an else or end keyword. Default
is t. This is an extremely useful feature for automatically
verifying that the keywords match—if they don’t, an error
message is displayed.

octave-block-offset
Extra indentation applied to statements in block structures.
Default is 2.

274 GNU Octave

octave-continuation-offset
Extra indentation applied to Octave continuation lines. De-
fault is 4.

octave-continuation-string
String used for Octave continuation lines. Normally ‘\’.

octave-mode-startup-message
If t (default), a startup message is displayed when Octave
mode is called.

If Font Lock mode is enabled, Octave mode will display
• strings in font-lock-string-face

• comments in font-lock-comment-face

• the Octave reserved words (such as all block keywords) and the text
functions (such as ‘cd’ or ‘who’) which are also reserved using font-
lock-keyword-face

• the builtin operators (‘&&’, ‘<>’, . . .) using font-lock-reference-
face

• the builtin variables (such as ‘prefer_column_vectors’, ‘NaN’ or
‘LOADPATH’) in font-lock-variable-name-face

• and the function names in function declarations in font-lock-
function-name-face.

There is also rudimentary support for Imenu (currently, function
names can be indexed).

You can generate TAGS files for Emacs from Octave ‘.m’ files using
the shell script otags that is installed alongside your copy of Octave.

Customization of Octave mode can be performed by modification of
the variable octave-mode-hook. If the value of this variable is non-nil,
turning on Octave mode calls its value.

If you discover a problem with Octave mode, you can conveniently
send a bug report using C-c C-b (octave-submit-bug-report). This au-
tomatically sets up a mail buffer with version information already added.
You just need to add a description of the problem, including a reproducible
test case and send the message.

D.3 Running Octave From Within Emacs

The package ‘octave’ provides commands for running an inferior Oc-
tave process in a special Emacs buffer. Use

M-x run-octave

to directly start an inferior Octave process. If Emacs does not know about
this command, add the line

Appendix D: Emacs Octave Support 275

(autoload ’run-octave "octave-inf" nil t)

to your ‘.emacs’ file.
This will start Octave in a special buffer the name of which is specified

by the variable inferior-octave-buffer and defaults to "*Inferior
Octave*". From within this buffer, you can interact with the inferior Oc-
tave process ‘as usual’, i.e., by entering Octave commands at the prompt.
The buffer is in Inferior Octave mode, which is derived from the standard
Comint mode, a major mode for interacting with an inferior interpreter.
See the documentation for comint-mode for more details, and use C-h b

to find out about available special keybindings.
You can also communicate with an inferior Octave process from within

files with Octave code (i.e., buffers in Octave mode), using the following
commands.

C-c i l Send the current line to the inferior Octave process (octave-
send-line). With positive prefix argument N, send that
many lines. If octave-send-line-auto-forward is non-
nil, go to the next unsent code line.

C-c i b Send the current block to the inferior Octave process
(octave-send-block).

C-c i f Send the current function to the inferior Octave process
(octave-send-defun).

C-c i r Send the region to the inferior Octave process (octave-
send-region).

C-c i s Make sure that ‘inferior-octave-buffer’ is displayed (octave-
show-process-buffer).

C-c i h Delete all windows that display the inferior Octave buffer
(octave-hide-process-buffer).

C-c i k Kill the inferior Octave process and its buffer (octave-kill-
process).

The effect of the commands which send code to the Octave process
can be customized by the following variables.

octave-send-echo-input
Non-nil means echo input sent to the inferior Octave pro-
cess. Default is t.

octave-send-show-buffer
Non-nil means display the buffer running the Octave pro-
cess after sending a command (but without selecting it). De-
fault is t.

276 GNU Octave

If you send code and there is no inferior Octave process yet, it will be
started automatically.

The startup of the inferior Octave process is highly customizable. The
variable inferior-octave-startup-args can be used for specifying com-
mand lines arguments to be passed to Octave on startup as a list of strings.
For example, to suppress the startup message and use ‘traditional’ mode,
set this to ’("-q" "--traditional"). You can also specify a startup file
of Octave commands to be loaded on startup; note that these commands
will not produce any visible output in the process buffer. Which file to
use is controlled by the variable inferior-octave-startup-file. If this
is nil, the file ‘~/.emacs-octave’ is used if it exists.

And finally, inferior-octave-mode-hook is run after starting the
process and putting its buffer into Inferior Octave mode. Hence, if you
like the up and down arrow keys to behave in the interaction buffer as in
the shell, and you want this buffer to use nice colors, add

(add-hook ’inferior-octave-mode-hook
(lambda ()

(turn-on-font-lock)
(define-key inferior-octave-mode-map [up]
’comint-previous-input)

(define-key inferior-octave-mode-map [down]
’comint-next-input)))

to your ‘.emacs’ file. You could also swap the roles of C-a (beginning-
of-line) and C-c C-a (comint-bol) using this hook.

Note: If you set your Octave prompts to something different
from the defaults, make sure that inferior-octave-prompt
matches them. Otherwise, nothing will work, because Emacs
will have no idea when Octave is waiting for input, or done
sending output.

D.4 Using the Emacs Info Reader for
Octave

You can also set up the Emacs Info reader for dealing with the re-
sults of Octave’s ‘help -i’. For this, the package ‘gnuserv’ needs to
be installed, which unfortunately still does not come with GNU Emacs
(it does with XEmacs). It can be retrieved from any GNU Emacs Lisp
Code Directory archive, e.g. ftp://ftp.cis.ohio-state.edu/pub/gnu/
emacs/elisp-archive, in the ‘packages’ subdirectory. The alpha version
of an enhanced version of gnuserv is available at ftp://ftp.wellfleet.
com/netman/psmith/emacs/gnuserv-2.1alpha.tar.gz.

Appendix D: Emacs Octave Support 277

If ‘gnuserv’ is installed, add the lines
(autoload ’octave-help "octave-hlp" nil t)
(require ’gnuserv)
(gnuserv-start)

to your ‘.emacs’ file.
You can use either ‘plain’ Emacs Info or the function octave-help as

your Octave info reader (for ‘help -i’). In the former case, set the Octave
variable INFO_PROGRAM to "info-emacs-info". The latter is perhaps
more attractive because it allows to look up keys in the indices of several
info files related to Octave (provided that the Emacs variable octave-
help-files is set correctly). In this case, set INFO_PROGRAM to "info-
emacs-octave-help".

If you use Octave from within Emacs, these settings are best done in
the ‘~/.emacs-octave’ startup file (or the file pointed to by the Emacs
variable inferior-octave-startup-file).

278 GNU Octave

Chapter 30: Grammar 279

30 Grammar

Someday I hope to expand this to include a semi-formal description of
Octave’s language.

30.1 Keywords

The following identifiers are keywords, and may not be used as variable
or function names:

all_va_args endwhile
break for
case function
catch global
continue gplot
else gsplot
elseif if
end otherwise
end_try_catch return
end_unwind_protect switch
endfor try
endfunction unwind_protect
endif unwind_protect_cleanup
endswitch while

The following command-like functions are also speical. They may be
used as simple variable names, but not as formal parameters for functions,
or as the names of structure variables. Failed assignments leave them
undefined (you can recover the orginal definition as a function using clear).

casesen echo load show
cd edit_history ls type
chdir format more which
clear help run_history who
diary history save whos
dir hold set

280 GNU Octave

Appendix E: GNU GENERAL PUBLIC LICENSE 281

Appendix E GNU GENERAL
PUBLIC LICENSE

Version 2, June 1991
Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

E.1 Preamble

The licenses for most software are designed to take away your freedom
to share and change it. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change free software—
to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free
Software Foundation software is covered by the GNU Library General
Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price.
Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for this service if
you wish), that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs; and
that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone
to deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis
or for a fee, you must give the recipients all the rights that you have. You
must make sure that they, too, receive or can get the source code. And
you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software,
and (2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free software.
If the software is modified by someone else and passed on, we want its
recipients to know that what they have is not the original, so that any

282 GNU Octave

problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents.
We wish to avoid the danger that redistributors of a free program will indi-
vidually obtain patent licenses, in effect making the program proprietary.
To prevent this, we have made it clear that any patent must be licensed
for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modi-
fication follow.

E.2 TERMS AND CONDITIONS FOR
COPYING, DISTRIBUTION AND
MODIFICATION

0. This License applies to any program or other work which contains a
notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The “Program”,
below, refers to any such program or work, and a “work based on
the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or translated
into another language. (Hereinafter, translation is included without
limitation in the term “modification”.) Each licensee is addressed as
“you”.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of run-
ning the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the Pro-
gram (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source
code as you receive it, in any medium, provided that you conspicu-
ously and appropriately publish on each copy an appropriate copy-
right notice and disclaimer of warranty; keep intact all the notices
that refer to this License and to the absence of any warranty; and
give any other recipients of the Program a copy of this License along
with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a
fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and

Appendix E: GNU GENERAL PUBLIC LICENSE 283

distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that
in whole or in part contains or is derived from the Program or
any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License.

c. If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifi-
able sections of that work are not derived from the Program, and can
be reasonably considered independent and separate works in them-
selves, then this License, and its terms, do not apply to those sec-
tions when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms
of this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Pro-
gram with the Program (or with a work based on the Program) on a
volume of a storage or distribution medium does not bring the other
work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a. Accompany it with the complete corresponding machine-
readable source code, which must be distributed under the

284 GNU Octave

terms of Sections 1 and 2 above on a medium customarily used
for software interchange; or,

b. Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control
compilation and installation of the executable. However, as a special
exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with
the major components (compiler, kernel, and so on) of the operating
system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access
to copy from a designated place, then offering equivalent access to
copy the source code from the same place counts as distribution of
the source code, even though third parties are not compelled to copy
the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program ex-
cept as expressly provided under this License. Any attempt otherwise
to copy, modify, sublicense or distribute the Program is void, and
will automatically terminate your rights under this License. How-
ever, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties
remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify
or distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and

Appendix E: GNU GENERAL PUBLIC LICENSE 285

all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject
to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent in-
fringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement
or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you,
then the only way you could satisfy both it and this License would
be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended
to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the in-
tegrity of the free software distribution system, which is implemented
by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system
in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed
to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the original
copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among coun-

286 GNU Octave

tries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new ver-
sions of the General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may dif-
fer in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and
“any later version”, you have the option of following the terms and
conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify
a version number of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free pro-
grams whose distribution conditions are different, write to the au-
thor to ask for permission. For software which is copyrighted by the
Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided
by the two goals of preserving the free status of all derivatives of
our free software and of promoting the sharing and reuse of software
generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE IS NOWARRANTY FOR THE PROGRAM, TO THE EX-
TENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLD-
ERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PRO-
GRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-

Appendix E: GNU GENERAL PUBLIC LICENSE 287

ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAM-
AGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAIL-
URE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

END OF TERMS AND CONDITIONS

288 GNU Octave

E.3 Appendix: How to Apply These Terms
to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it free
software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to
attach them to the start of each source file to most effectively convey the
exclusion of warranty; and each file should have at least the “copyright”
line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version

2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public

License along with this program; if not, write to the Free

Software Foundation, Inc., 59 Temple Place - Suite 330,

Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper
mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type ‘show w’. This is free software, and you are welcome

to redistribute it under certain conditions; type ‘show c’

for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the
appropriate parts of the General Public License. Of course, the commands
you use may be called something other than ‘show w’ and ‘show c’; they
could even be mouse-clicks or menu items—whatever suits your program.

Appendix E: GNU GENERAL PUBLIC LICENSE 289

You should also get your employer (if you work as a programmer) or
your school, if any, to sign a “copyright disclaimer” for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in

the program ‘Gnomovision’ (which makes passes at compilers)

written by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your pro-
gram into proprietary programs. If your program is a subroutine library,
you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Library
General Public License instead of this License.

290 GNU Octave

Other Scientific Packages for the GNU System 291

Other Scientific Packages for the
GNU System

The GNU system provides a complete environment for scientific com-
puting. It is widely used for many tasks, from desktop data-analysis to
parallel computing on commodity hardware. If you are using free software
for scientific work here is a selection of other GNU packages which may
be of interest, the descriptions are taken from their websites:

GNU R

R is a language and environment for statistical computing and graph-
ics. It is a GNU project which is similar to the S language and environment
which was developed at Bell Laboratories (formerly AT&T, now Lucent
Technologies) by John Chambers and colleagues. R can be considered
as a different implementation of S. There are some important differences,
but much code written for S runs unaltered under R.

One of R’s strengths is the ease with which well-designed publication-
quality plots can be produced, including mathematical symbols and for-
mulae where needed. Great care has been taken over the defaults for the
minor design choices in graphics, but the user retains full control.

R is an integrated suite of software facilities for data manipulation,
calculation and graphical display. It includes

• an effective data handling and storage facility,

• a suite of operators for calculations on arrays, in particular matrices,

• a large, coherent, integrated collection of intermediate tools for data
analysis,

• graphical facilities for data analysis and display either on-screen or
on hardcopy, and

• a well-developed, simple and effective programming language which
includes conditionals, loops, user-defined recursive functions and in-
put and output facilities.

The term environment is intended to characterize it as a fully planned
and coherent system, rather than an incremental accretion of very specific
and inflexible tools, as is frequently the case with other data analysis
software.

R, like S, is designed around a true computer language, and it allows
users to add additional functionality by defining new functions. Much
of the system is itself written in the R dialect of S, which makes it easy

292 GNU Octave

for users to follow the algorithmic choices made. For computationally-
intensive tasks, C, C++ and Fortran code can be linked and called at run
time. Advanced users can write C code to manipulate R objects directly.

Many users think of R as a statistics system. We prefer to think of
it of an environment within which statistical techniques are implemented.
R can be extended (easily) via packages. There are about eight packages
supplied with the R distribution and many more are available through
the CRAN family of Internet sites covering a very wide range of modern
statistics.

More information: http://www.gnu.org/software/r/

GNU Plotutils

GNU Plotutils provides a portable device-independent graphics system
for technical users. Its centerpiece is libplot, a powerful C/C++ function
library for exporting 2-D vector graphics in many file formats, both vector
and raster. The philosophy of the library can be summarised as Write
once, plot anywhere. The following formats are interchangeably supported
through a single API (application programming interface):

Adobe Illustrator format
GNU Metafile
HP-GL/2
Idraw format
PCL 5
PNG — Portable Network Graphics
PNM — Portable Bitmap
PostScript
ReGIS
SVG — Scalable Vector Graphics
Tektronix
WebCGM
X11
Xfig format

The high-level interface supports graphical objects such as lines, circles
and ellipses, points, marker symbols and paths. A path can be defined
as a sequence of line segments, arcs (either circular or elliptic), or Bezier
curve segments (either quadratic or cubic). Plots can be annotated with
text strings in many fonts. Text strings may include subscripts and super-
scripts, and can use characters chosen from different fonts. GNU Plotutils

Other Scientific Packages for the GNU System 293

supports the 35 standard Postscript fonts, the 45 standard PCL-5 fonts,
and is also distributed with 22 device-independent Hershey vector fonts,
including Russian and Japanese.

The package also contains many command-line programs for plotting
scientific data.

More information: http://www.gnu.org/software/plotutils/

GNU Scientific Library

The GNU Scientific Library (GSL) is a collection of routines for nu-
merical computing. The routines have been written from scratch in C,
and present a modern Applications Programming Interface (API) for C
programmers, allowing wrappers to be written for very high level lan-
guages. The library covers a wide range of topics in numerical computing
including the following areas,

Complex Numbers Roots of Polynomials
Special Functions Vectors and Matrices
Permutations Combinations
Sorting BLAS Support
Linear Algebra BLAS Support
Fast Fourier Transforms Eigensystems
Random Numbers Quadrature
Random Distributions Quasi-Random Sequences
Histograms Statistics
Monte Carlo Integration N-Tuples
Differential Equations Simulated Annealing
Numerical Differentiation Interpolation
Series Acceleration Chebyshev Approximations
Root-Finding Discrete Hankel Transforms
Least-Squares Fitting Minimization
IEEE Floating-Point Physical Constants

The source code for the GNU Scientific Library is distributed under
the GNU General Public License.

More information: http://www.gnu.org/software/gsl/

GNU Emacs Calc

GNU Emacs Calc is an advanced calculator and mathematical tool
that runs as part of the GNU Emacs environment. It is very roughly
based on the HP-28/48 series of calculators, its many features include:
• Choice of algebraic or RPN (stack-based) entry of calculations.
• Arbitrary precision integers and floating-point numbers.

294 GNU Octave

• Arithmetic on rational numbers, complex numbers (rectangular and
polar), error forms with standard deviations, open and closed inter-
vals, vectors and matrices, dates and times, infinities, sets, quantities
with units, and algebraic formulas.

• Mathematical operations such as logarithms and trigonometric func-
tions.

• Programmer’s features (bitwise operations, non-decimal numbers).
• Financial functions such as future value and internal rate of return.
• Number theoretical features such as prime factorization and arith-

metic modulo M for any M.
• Algebraic manipulation features, including symbolic calculus.
• Moving data to and from regular editing buffers.
• "Embedded mode" for manipulating Calc formulas and data directly

inside any editing buffer.
• Graphics using GNUPLOT, a versatile (and free) plotting program.
• Easy programming using keyboard macros, algebraic formulas, alge-

braic rewrite rules, or extended Emacs Lisp.

Calc tries to include a little something for everyone; as a result it is large
and might be intimidating to the first-time user. In terms of efficiency,
scope and depth, Calc cannot replace a powerful symbolic algebra tool like
GNU Maxima (Macsyma), but Calc has the advantages of convenience for
Emacs users.

The source code for Calc is distributed under the GNU General Public
License.

More information: http://www.gnu.org/software/calc/

Variable Index 295

Variable Index

A
all_va_args 107

ans . 124

argv . 19

auto_unload_dot_oct_files 64,
116

automatic_replot 64, 152

B
beep_on_error 64, 120

C
completion_append_char 26, 64

crash_dumps_octave_core . . 65, 129

D
default_eval_print_flag . . . 64, 87

default_global_variable_value

. 61

DEFAULT_LOADPATH 63, 110

default_return_value. 64, 106

default_save_format 65, 129

define_all_return_values 65,
106

do_fortran_indexing 65, 71

do_what_i_mean_not_what_i_say

. 14

E
e . 181

echo_executing_commands 30

EDITOR 28, 63, 68

empty_list_elements_ok 44, 65

eps . 181

error_text . 119

EXEC_PATH 63, 236

F
F_DUPFD . 238
F_GETFD . 238
F_GETFL . 238
F_SETFD . 238
F_SETFL . 238
fixed_point_format 43, 65

G
gnuplot_binary 65, 158
gnuplot_has_frames 159
gnuplot_has_multiplot 159

H
history_file 28, 65
history_size 28, 65

I
i . 180
I . 180
ignore_function_time_stamp . . . 65,

111
IMAGEPATH . 221
implicit_num_to_str_ok 52, 65
implicit_str_to_num_ok 52, 66
inf . 180
Inf . 180
INFO_FILE 22, 63
INFO_PROGRAM 22, 63
initialize_global_variables . . 60

J
j . 180
J . 180

L
Limit . 76
LOADPATH 64, 110

296 GNU Octave

M
max_recursion_depth 66

N
nan . 180
NaN . 180
nargin . 103
nargout . 105

O
O_APPEND . 238
O_ASYNC . 238
O_NONBLOCK . 238
O_RDONLY . 238
O_RDWR . 238
O_SYNC . 238
O_WRONLY . 238
OCTAVE_EXEC_PATH 68
OCTAVE_HISTFILE 69
OCTAVE_HISTSIZE 68
OCTAVE_HOME . 64
OCTAVE_INFO_FILE 68
OCTAVE_INFO_PROGRAM 68
OCTAVE_PATH . 68
OCTAVE_VERSION 242
ok_to_lose_imaginary_part 66
output_max_field_width 42, 66
output_precision 42, 66

P
page_output_immediately 124
page_screen_output 66, 123
PAGER . 64, 123
pi . 181
prefer_column_vectors. 66, 73
prefer_zero_one_indexing 72
print_answer_id_name. 66, 126
print_empty_dimensions 44, 66
program_invocation_name 19
program_name 20

propagate_empty_matrices 45

PS1 . 29, 64

PS2 . 29, 64

PS4 . 29, 64

R

realmax . 181

realmin . 181

resize_on_range_error. 66, 73

return . 109

return_last_computed_value . . . 66,
109

S

save_precision 67, 129

saving_history 28, 67

SEEK_CUR . 146

SEEK_END . 146

SEEK_SET . 146

silent_functions 67, 104

split_long_rows 42, 67

stderr . 130

stdin . 130

stdout . 130

string_fill_char 48

struct_levels_to_print 56, 67

suppress_verbose_help_message

. 23, 67

T

treat_neg_dim_as_zero 67, 171

Variable Index 297

W
warn_assign_as_truth_value . . . 67,

91
warn_comma_in_global_decl 60,

67
warn_divide_by_zero 67, 78
warn_function_name_clash 67,

111

warn_missing_semicolon 104

warn_reload_forces_clear 68,
116

warn_variable_switch_label . . . 68,
93

whitespace_in_literal_matrix

. 41, 68

298 GNU Octave

Operator Index 299

Operator Index

!
! . 80
!= . 79

&
& . 79
&& . 80

’
’ . 35, 47, 78

(
(. 71

)
) . 71

*
*. 77
** . 77

,
, . 39

-
- . 77, 78
-- . 84

.

.’ . 78

.* . 77

.** . 78

./ . 77

.+ . 77

.^ . 78

.\ . 77

/
/. 77

:
: . 45

;
; . 39

=
= . 81

== . 79

[
[. 39

]
] . 39

|
|. 80

|| . 81

~
~. 80

~= . 79

"
" . 35, 47

300 GNU Octave

+
+ . 77, 78
++ . 84

>
>. 79
>= . 79

^

^. 77

\
\. 77

<
<. 79
<= . 79
<> . 79

Function Index 301

Function Index

A
abcddim . 209

abs . 175

acos . 176

acosh . 177

acot . 176

acoth . 177

acsc . 176

acsch . 177

all . 163

angle . 175

any . 163

are . 209

arg . 175

asctime . 227

asec . 176

asech . 177

asin . 176

asinh . 176

atan . 176

atan2 . 177

atanh . 177

atexit . 21

axis . 155

B
balance . 183

bar . 155

besseli . 178

besselj . 178

besselk . 178

bessely . 178

beta . 178

betai . 178

bin2dec . 50

bincoeff . 179

blanks . 48

bottom_title 161

bug_report 252, 253

C
c2d . 209

cd . 14, 239

ceil . 173

chdir . 14, 239

chol . 186

clc . 24

clear . 61

clearplot . 154

clg . 154

clock . 229

closeplot . 155

colloc . 194

colormap . 219

columns . 36

common_size 164

commutation_matrix 180

compan . 205

complement . 203

completion_matches 26

computer . 241

cond . 183

conj . 176

contour . 156

conv . 205

corrcoef . 201

cos . 176

cosh . 176

cot . 176

coth . 176

cov . 201

cputime . 229

create_set . 203

cross . 180

csc . 176

csch . 176

ctime . 226

cumprod . 177

cumsum . 177

302 GNU Octave

D
dare . 210
dassl . 196
dassl_options 197
date . 229
deblank . 49
dec2bin . 51
dec2hex . 51
deconv . 205
det . 184
detrend . 215
dgram . 210
diag . 170
diary . 30
diff . 164
dir . 239
disp . 124
dlqe . 210
dlqr . 211
dlyap . 211
document . 62
dup2 . 237
duplication_matrix 180

E
echo . 30
edit_history 27
eig . 184
endgrent . 241
endpwent . 241
erf . 179
erfc . 179
erfinv . 179
error . 119
etime . 229
eval . 87
exec . 237
exist . 62
exit . 21
exp . 173
expm . 189
eye . 168

F
fclose . 132

fcntl . 238

feof . 145

ferror . 145

feval . 87

fflush . 124

fft . 215

fft2 . 215

fftconv . 216

fftfilt . 216

fgetl . 132

fgets . 132

figure . 159

file_in_path 233

filter . 216

find . 164

findstr . 49

finite . 164

fix . 173

fliplr . 165

flipud . 165

floor . 173

fnmatch . 233

foo . 13

fopen . 131

fork . 236

format . 125

fprintf . 133

fputs . 132

fread . 143

freport . 146

freqz . 217

frewind . 146

fscanf . 139

fseek . 146

fsolve . 191

fsolve_options 191

ftell . 146

fwrite . 145

Function Index 303

G
gamma . 179
gammai . 179
gammaln . 179
gcd . 173
getegid . 239
getenv . 239
geteuid . 239
getgid . 239
getgrent . 241
getgrgid . 241
getgrnam . 241
getpgrp . 238
getpid . 238
getppid . 238
getpwent . 240
getpwnam . 240
getpwuid . 240
getrusage . 242
getuid . 239
givens . 184
glob . 233
gls . 199
gmtime . 226
gplot . 149
gray . 219
gray2ind . 219
grid . 159
gset . 151
gshow . 151
gsplot . 157

H
hankel . 171
help . 22
hess . 186
hex2dec . 51
hilb . 171
hist . 156
history . 27
hold . 154
home . 24

I
ifft . 215

ifft2 . 215

imag . 176

image . 219

imagesc . 219

imshow . 220

ind2gray . 220

ind2rgb . 220

index . 49

input . 126

int2str . 48

intersection 203

inv . 184

inverse . 184

invhilb . 171

is_controllable 212

is_global . 61

is_leap_year 230

is_matrix . 45

is_observable 212

is_scalar . 46

is_square . 46

is_struct . 58

is_symmetric 46

is_vector . 45

isalnum . 52

isalpha . 53

isascii . 53

iscntrl . 53

isdigit . 53

isempty . 37

isgraph . 53

ishold . 154

isieee . 242

isinf . 164

islower . 53

isnan . 164

isprint . 53

ispunct . 53

isspace . 53

isstr . 49

304 GNU Octave

isupper . 53
isxdigit . 53

K
kbhit . 127
keyboard . 127
kron . 190
kurtosis . 202

L
lcm . 173
length . 36
lgamma . 179
lin2mu . 223
linspace . 170
load . 129
loadaudio . 223
loadimage . 220
localtime . 226
log . 174
log10 . 174
log2 . 174
loglog . 156
logm . 189
logspace . 171
lqe . 212
lqr . 212
ls . 239
lsode . 195
lsode_options 196
lstat . 232
lu . 186
lyap . 213

M
mahalanobis 202
max . 174
mean . 201
median . 201
menu . 127

mesh . 158
meshdom . 158
min . 174
mkdir . 231
mkfifo . 231
mktime . 227
more . 123
mplot . 159
mu2lin . 223
multiplot . 160

N
nargchk . 106
newtroot . 88
nextpow2 . 174
norm . 184
ntsc2rgb . 220
null . 185
num2str . 48

O
ocean . 220
octave_config_info 242
ols . 199
oneplot . 160
ones . 168
orth . 185

P
pause . 230
pclose . 235
perror . 121
pinv . 185
pipe . 237
playaudio . 224
plot . 152
plot_border 160
polar . 156
poly . 205
polyderiv . 206

Function Index 305

polyfit . 206
polyinteg . 206
polyreduce . 206
polyval . 206
polyvalm . 206
popen . 235
popen2 . 235
pow2 . 174
printf . 133
prod . 177
purge_tmp_files 155
putenv . 239
puts . 132
pwd . 239

Q
qr . 186
quad . 193
quad_options 193
quit . 21
qzhess . 190
qzval . 190

R
rand . 169
randn . 169
rank . 185
readdir . 231
real . 176
record . 224
rem . 174
rename . 231
replot . 151
reshape . 166
residue . 206
rgb2ind . 220
rgb2ntsc . 220
rindex . 49
rmdir . 231
roots . 207
rot90 . 165

round . 175
rows . 36
run_history . 28

S
save . 128
saveaudio . 223
saveimage . 220
scanf . 140
schur . 187, 188
sec . 176
sech . 176
semilogx . 156
semilogy . 156
set . 151
setaudio . 224
setgrent . 241
setpwent . 240
setstr . 48
shg . 152
shift . 166
show . 151
sign . 175
sin . 176
sinc . 217
sinh . 176
size . 36
skewness . 202
sleep . 230
sort . 166
source . 113
split . 50
sprintf . 133
sqrt . 175
sqrtm . 190
sscanf . 140
stairs . 156
stat . 232
std . 201
str2mat . 49
str2num . 51
strcat . 48

306 GNU Octave

strcmp . 50

strerror . 121

strftime . 227

strrep . 50

struct_contains 58

struct_elements 58

subplot . 160

substr . 50

subwindow . 161

sum . 177

sumsq . 178

svd . 188

syl . 190

sylvester_matrix 172

system . 234

T
tan . 176

tanh . 176

tic . 230

tilde_expand 234

time . 225

title . 159

tmpnam . 145

toascii . 51

toc . 230

toeplitz . 172

tolower . 51

top_title . 161

toupper . 51

trace . 185

tril . 167

triu . 167

type . 63

tzero . 213

U
umask . 232
undo_string_escapes 52
union . 203
unlink . 231
usage . 120
usleep . 231

V
va_arg . 107
va_start . 106
vander . 172
vec . 168
vech . 168
version . 242
vr_val . 108

W
waitpid . 237
warning . 120
which . 63
who . 62
whos . 62

X
xlabel . 159
xor . 175

Y
ylabel . 159

Z
zeros . 169
zlabel . 159

Concept Index 307

Concept Index

#
‘#’ . 33

‘#!’ . 32

%
‘%’ . 33

-
--braindead . 19

--debug . 17

--echo-commands 17

--exec-path path 17

--help . 17

--info-file filename 18

--info-program program 18

--interactive 18

--no-init-file 18

--no-line-editing 18

--no-site-file 18

--norc . 18

--path path . 18

--quiet . 18

--silent . 18

--traditional 19

--verbose . 19

--version . 19

-? . 17

-d . 17

-f . 18

-h . 17

-i . 18

-p path . 18

-q . 18

-v . 19

-V . 19

-x . 17

.

... 106, 107

... continuation marker 99

.octaverc . 21

~
~/.octaverc . 21

\
\ continuation marker 99

A
acknowledgements 3

addition . 76

and operator . 79

answers, incorrect. 253, 255

any key . 11

arguments in function call 74

arithmetic operators 76

assignment expressions 81

assignment operators 81

B
body of a loop 93

boolean expressions 79

boolean operators 79

break statement 96

bug criteria . 252

bug report mailing lists 253

bugs . 252

bugs, investigating 255

bugs, known 251

bugs, reporting 253

built-in data types 35

built-in function 13

308 GNU Octave

C
case statement 92
catch . 99
character strings 35, 47
Cholesky factorization 186
clearing the screen 24
coding standards 245
command and ouput logs 30
command completion 25
command descriptions 14
command echoing 30
command history 26
command options 17
command-line editing 23
comments . 33
comparison expressions 78
complex-conjugate transpose 76
continuation lines 99
continue statement 97
contributing to Octave 5
contributors . 3
conversion specifications (printf)

. 133
conversion specifications (scanf)

. 140
copyright . 279
core dump . 252
customizing the prompt 28

D
DAE . 195
data structures 36, 55
data types . 35
data types, built-in 35
data types, user-defined. 36
decrement operator 83
defining functions 101
description format 13
diary of commands and output . . . 30
Differential Equations 195
diffs, submitting 256
distribution of Octave 6

division . 76

documentation notation 12

documenting Octave programs . . . 33

dynamic linking 113

E
echoing executing commands 30

editing the command line 23

element-by-element evaluation 79

else statement 89

elseif statement 89

Emacs TAGS files 274

end statement. 89

end_try_catch 99

end_unwind_protect 98

endfor statement 94

endfunction statement 101

endif statement 89

endswitch statement 92

endwhile statement 93

equality operator 78

equality, tests for 78

equations, nonlinear 191

erroneous messages 253

erroneous results. 253, 255

error message notation. 12

error messages 31

error messages, incorrect 253

escape sequence notation 47

evaluation notation 12

executable scripts 32

execution speed 245

exiting octave 7, 21

exponentiation 76

expression, range 45

expressions . 71

expressions, assignment 81

expressions, boolean 79

expressions, comparison. 78

expressions, logical 79

Concept Index 309

F
factorial function 76
fatal signal . 252
flag character (printf) 135
flag character (scanf) 141
flying high and fast 59
fonts . 11
for statement. 94
Fordyce, A. P. 88
Frobenius norm 184
function descriptions 13
function file 14, 109
function statement 101
functions, user-defined 101
funding Octave development 5

G
getting a good job 59
global statement 59
global variables 59
grammar rules 279
graphics . 152
greater than operator 78

H
header comments 248
help, on-line . 22
help, where to find 257
Hermitian operator 76
Hessenberg decomposition 186
history . 3
history of commands 26

I
if statement . 89
improving Octave 253, 256
incorrect error messages 253
incorrect output 253, 255
incorrect results 253, 255
increment operator 83

infinity norm 184

initialization . 20

input conversions, for scanf 141

input history. 26

installation trouble 251

installing Octave 259

introduction . 7

invalid input 253

J
job hunting . 59

K
keywords . 279

known causes of trouble 251

L
language definition 279

less than operator 78

loadable function 14

logging commands and output. . . . 30

logical expressions 79

logical operators 79

loop . 93

looping over structure elements . . . 95

LP . 199

LU decomposition 186

lvalue . 82

M
mapping function 14

matching failure, in scanf 140

matrices . 39

matrix multiplication 76

maximum field width (scanf) . . . 141

messages, error 31

minimum field width (printf) . . 135

multiplication 76

310 GNU Octave

N
negation . 76

NLP . 199

nonlinear equations 191

nonlinear programming 199

not operator . 79

numeric constant 35, 39

numeric value 35, 39

O
Octave command options 17

ODE . 195

on-line help . 22

operator precedence 84

operators, arithmetic 76

operators, assignment 81

operators, boolean 79

operators, decrement 83

operators, increment. 83

operators, logical 79

operators, relational 78

optimization 199

options, Octave command 17

or operator . 79

oregonator . 195

otags . 274

otherwise statement 92

output conversions, for printf . . 136

P
partial fraction expansion 206

patches, submitting 256

plotting . 152

precision (printf) 135

printing notation 12

program, self contained 32

programs . 33

prompt customization 28

Q

QP . 199

QR factorization 186

quadratic programming 199

quitting octave 7, 21

quotient . 76

R

range expressions. 45

relational operators. 78

reporting bugs 252, 253

results, incorrect 253, 255

S

Schur decomposition 188

script files . 101

scripts . 32

self contained programs 32

short-circuit evaluation 80

side effect . 82

singular value decomposition 188

speedups . 245

standards of coding style 245

startup . 20

startup files . 20

statements . 89

strings . 35, 47

structure elements, looping over . . 95

structures 36, 55

submitting diffs 256

submitting patches 256

subtraction . 76

suggestions . 253

switch statement 92

Concept Index 311

T
TAGS . 274
tests for equality 78
tips . 245
transpose . 76
transpose, complex-conjugate 76
troubleshooting 251
try statement. 99

U
unary minus . 76
undefined behavior 253
undefined function value 253
unwind_protect statement 98
unwind_protect_cleanup 98
use of comments 33

user-defined data types 36
user-defined functions 101
user-defined variables 59

V
variable descriptions 14
Variable-length argument lists . . . 106
Variable-length return lists 107
variables, global 59
variables, user-defined 59

W
warranty . 279
while statement 93
wrong answers 253, 255

