Markov Models and Hidden Markov Models for sequence analysis

Michael Seifert

IPK Gatersleben

16.01.07-17.01.07
seifert@ipk-gatersleben.de

Overview

(1) CpG Islands

(2) Markov Models

(3) Hidden Markov Models

CpG Islands - Motivation

- genome segments with high frequency of dinucleotide CG
- segment size 100 up to 1000 bp
- in different organisms (human, fly, mouse, worm, arabidopsis, ...)

CpG Islands - Evolution

- C in dinucleotide $C G$ often methylated
- methylated C is frequently mutated to $T: C G \rightarrow T G$
- suppression of methylation in promotor regions of different genes (e.g. housekeeping genes)
- mutation of C to T suppressed
- dinucleotid CG more frequently in promotor regions than in other genome regions $\rightsquigarrow C p G$ Islands

CpG Islands - Classification of short DNA segments

- set of short DNA segments $\left\{o^{1}, \ldots, o^{M}\right\}$

Question

How can we decide for each DNA segment o^{m} if it is from a CpG Island or not?

CpG Islands - Basics of Modeling

- dinucleotides over DNA alphabet $\{A, C, G, T\}$
- $A A, A C, A G, \ldots, T T$
- DNA segments of CpG Islands
- DNA segments of background (not CpG Islands)
- Modeling DNA segments
- random vector $O=O_{1}, \ldots, O_{T}$
- O_{t} random variable over $\{A, C, G, T\}$

CpG Islands - Using Markov Models for Classification

First-order homogeneous Markov Model for DNA

- Model Assumptions
- O_{1} is independent of O_{2}, \ldots, O_{T}
- O_{t+1} depends only on O_{t}
- homogeneous: one probability distribution for all O_{t+1} that depend on O_{t}
- Markov Model $\lambda=(S, \pi, \mathcal{A})$
- set of states $S=\{A, C, G, T\}$
- start distribution $\pi=\left(\pi_{A}, \pi_{C}, \pi_{G}, \pi_{T}\right)$
- stochastic transition matrix $\mathcal{A}=\left(a_{i j}\right)_{i, j \in S}$

CpG Islands - Using Markov Models for Classification

First-order homogeneous Markov Model for DNA

- Likelihood

$$
\begin{aligned}
P[O=o \mid \lambda] & =P\left[O_{1}=o_{1} \mid \lambda\right] \cdot \prod_{t=1}^{T-1} P\left[O_{t+1}=o_{t+1} \mid O_{t}=o_{t}, \lambda\right] \\
& =\pi_{o_{1}} \prod_{t=1}^{T-1} a_{o_{t} o_{t+1}}
\end{aligned}
$$

CpG Islands - Graphical Representation of Markov Models

CpG Islands - Classificator for short DNA segments

- Create two Markov Models
- $\lambda_{C p G}=\left(S, \pi, \mathcal{A}_{C p G}\right)$ for CpG Islands
- $\lambda_{\neg C_{p} G}=\left(S, \pi, \mathcal{A}_{\neg C_{p} G}\right)$ for background
- Make Maximum Likelihood estimation
- for $\lambda_{C_{p} G}$ using $C_{p G}$ Islands training data
- for $\lambda_{\neg C_{p} G}$ using background training data
- Decide for each of the short DNA segments $\left\{o^{1}, \ldots, o^{M}\right\}$ whether it belongs to CpG Islands or background
- using score $S\left(o^{m}\right)=\log \left(\frac{P\left[O=o^{m} \mid \lambda_{C P G}\right]}{P\left[O=o^{m} \mid \lambda_{\neg} C_{P G}\right]}\right)$
- $S\left(o^{m}\right)>\varepsilon: o^{m}$ is a CpG Island
- $S\left(o^{m}\right)<-\varepsilon: o^{m}$ is background

CpG Islands - Estimated Transition Matrices

$$
\begin{aligned}
\mathcal{A}_{C p G} & =\left(\begin{array}{ccccc}
a_{i j}^{C_{p} G} & A & C & G & T \\
A & 0.180 & 0.274 & 0.426 & 0.120 \\
C & 0.171 & 0.308 & 0.274 & 0.188 \\
G & 0.161 & 0.339 & 0.375 & 0.125 \\
T & 0.079 & 0.355 & 0.389 & 0.182
\end{array}\right) \\
\mathcal{A}_{\neg C_{p} G} & =\left(\begin{array}{ccccc}
a_{i j} C_{p} G & A & C & G & T \\
A & 0.300 & 0.205 & 0.285 & 0.210 \\
C & 0.322 & 0.298 & 0.078 & 0.302 \\
G & 0.248 & 0.246 & 0.298 & 0.208 \\
T & 0.177 & 0.239 & 0.292 & 0.292
\end{array}\right)
\end{aligned}
$$

CpG Islands - Detection in large DNA segments

Large DNA segments

- can contain different numbers of CpG Islands

Markov Models

- classify short DNA segments
- cannot model transitions between CpG Islands and background

Markov Models for large DNA segments

- segment large DNA segment o into short DNA segments o^{1}, \ldots, o^{M}
- classify each short DNA segment using Markov Models $\lambda_{C p G}$ and $\lambda_{\neg C_{p} G}$

CpG Islands - Detection in large DNA segments

Problems

- CpG Islands have variable lengths
- How should we segment large DNA segments?

We require another model for analyzing large DNA segments!

- use large DNA segments without segmentation
- model CpG Islands and background in one model
- detection of CpG Islands and background segments

CpG Islands - Detection in large DNA segments

New model for large DNA segments

- two states
- $C p G^{+}$for CpG Islands
- $C p G^{-}$for background
- transition probabilities
- $\mathrm{CpG}^{+} \rightarrow \mathrm{CpG}^{+}$: extend CpG Island
- $\mathrm{CpG}^{+} \rightarrow \mathrm{CpG}^{-}$: change from CpG Island to background
- $\mathrm{CpG}^{-} \rightarrow \mathrm{CpG}^{+}$: change from background to CpG Island
- $C p G^{-} \rightarrow C p G^{-}$: extend background
- start probabilities for $C p G^{+}$and $C p G^{-}$

CpG Islands - Detection in large DNA segments

- We have defined a Markov Model!

- But how can this model work with large DNA segments over alphabet $\{A, C, G, T\}$?
- state $C p G^{+}$gets emission distributions for $\{A, C, G, T\}$
- state $C p G^{-}$gets emission distributions for $\{A, C, G, T\}$
- e.g. useful for CpG Islands: probability for nucleotide o_{t+1} depends on o_{t}, but not in this lecture
- Now we have motivated an Hidden Markov Model!

CpG Islands - Hidden Markov Models

Modeling

- emission sequence: random vector $O=O_{1}, \ldots, O_{T}$
- O_{t} random variable over $\{A, C, G, T\}$
- state sequence: random vector $Q=Q_{1}, \ldots, Q_{T}$
- Q_{t} random variable over $\left\{C p G^{+}, C p G^{-}\right\}$

Hidden Markov Model for large DNA segments

- Model Assumptions
- O_{t} is independent of all other O_{d} with $d \neq t$
- O_{t} depends on Q_{t}
- Q_{1} is independent of Q_{2}, \ldots, Q_{T}
- Q_{t+1} depends only on Q_{t}
- emission sequence o is known and state sequence q is unknown (hidden)

CpG Islands - Hidden Markov Models

Hidden Markov Model for large DNA segments

- $\lambda=(\Sigma, S, \pi, \mathcal{A}, B)$
- emission alphabet $\Sigma=\{A, C, G, T\}$
- set of states $S=\left\{C p G^{+}, C p G^{-}\right\}$
- start distribution $\pi=\left(\pi_{C_{p G}+}, \pi_{C_{p G}-}\right)$
- stochastic transition matrix $\mathcal{A}=\left(a_{i j}\right)_{i, j \in S}$
- stochastic emission matrix $B=\left(b_{i}(v)\right)_{i \in S \wedge v \in \Sigma}$

CpG Islands - Hidden Markov Models

Hidden Markov Model for large DNA segments

- Complete-Data-Likelihood

$$
\begin{aligned}
P[O=o, Q=q \mid \lambda]= & P\left[Q_{1}=q_{1} \mid \lambda\right] \cdot \prod_{t=1}^{T-1} P\left[Q_{t+1}=q_{t+1} \mid Q_{t}=q_{t}, \lambda\right] \\
& \cdot \prod_{t=1}^{T} P\left[O_{t}=o_{t} \mid Q_{t}=q_{t}, \lambda\right] \\
= & \pi_{q_{1}} \cdot \prod_{t=1}^{T-1} a_{q_{t} q_{t+1}} \cdot \prod_{t=1}^{T} b_{q_{t}}\left(o_{t}\right)
\end{aligned}
$$

runtime: $\mathcal{O}(T)$

CpG Islands - Hidden Markov Models

Central Questions
(1) Likelihood of emission sequence ounder $\mathrm{HMM} \lambda$?
(2) Probability of state i at time step t for given emission sequence o ?
(3) Probability of a transition from state i to state j at time step t for given emission sequence o ?
(9) Most probable state sequence q^{*} for a given emission sequence o under HMM λ ?
(3) Maximum Likelihood estimation of HMM λ ?

Likelihood of emission sequence o under HMM λ ?

Naive Approach

- emission sequence $o=o_{1}, \ldots, o_{T}$
- use Complete-Data-Likelihood $P[O=o, Q=q \mid \lambda]$
- marginalize over all $|S|^{T}$ state sequences q

$$
P[O=o \mid \lambda]=\sum_{q \in S^{\top}} P[O=o, Q=q \mid \lambda]
$$

- problem: number of state sequences grows exponential with the length of the emission sequence
- runtime: $\mathcal{O}\left(T \cdot|S|^{T}\right)$

Likelihood of emission sequence o under HMM λ ?

Forward-Algorithm

- dynamic programming
- Forward-Variable: $\alpha_{t}(i):=P\left[O_{1}^{t}=o_{1}^{t}, Q_{t}=i \mid \lambda\right]$
- Probability to observe emissions o_{1}, \ldots, o_{t} and to be in state i at time step t under HMM λ.
- Algorithm

Initialization:

$$
\forall i \in S: \quad \alpha_{1}(i)=\pi_{i} \cdot b_{i}\left(o_{1}\right)
$$

Iteration:

$$
\forall 1 \leq t<T \forall i \in S: \quad \alpha_{t+1}(i)=\left(\sum_{j \in S} \alpha_{t}(j) \cdot a_{j i}\right) \cdot b_{i}\left(o_{t+1}\right)
$$

Likelihood of emission sequence o under HMM λ ?

Forward-Algorithm

- Likelihood: $P[O=o \mid \lambda]=\sum_{i \in S} \alpha_{T}(i)$
- Runtime
- $\alpha_{t+1}(i)$ in $\mathcal{O}(|S|)$
- $|S|$ Forward-Variables $\alpha_{t}(i)$ per time step t
- T time steps in total
- Forward-Algorithm requires $\mathcal{O}\left(T \cdot|S|^{2}\right)$

Probability of state i at time step t for given emission

 sequence o?Gamma-Variable

$$
\begin{aligned}
\gamma_{t}(i): & =P\left[Q_{t}=i \mid O=o, \lambda\right] \\
& =\frac{P\left[O_{1}^{T}=o_{1}^{T}, Q_{t}=i \mid \lambda\right]}{P[O=o \mid \lambda]} \\
& =\frac{P\left[O_{t+1}^{T}=o_{t+1}^{T} \mid O_{1}^{t}=o_{1}^{t}, Q_{t}=i, \lambda\right] \cdot P\left[O_{1}^{t}=o_{1}^{t}, Q_{t}=i \mid \lambda\right]}{P[O=o \mid \lambda]} \\
& =\frac{P\left[O_{t+1}^{T}=o_{t+1}^{T} \mid O_{1}^{t}=o_{1}^{t}, Q_{t}=i, \lambda\right] \cdot \alpha_{t}(i)}{P[O=o \mid \lambda]}
\end{aligned}
$$

- O_{t} is independent of all other O_{d} with $d \neq t$
- Q_{t+1} depends on Q_{t}
- $P\left[O_{t+1}^{T}=o_{t+1}^{T} \mid O_{1}^{t}=o_{1}^{t}, Q_{t}=i, \lambda\right]=P\left[O_{t+1}^{T}=o_{t+1}^{T} \mid Q_{t}=i, \lambda\right]$

Probability of state i at time step t for given emission sequence o?

Backward-Algorithm

- dynamic programming
- Backward-Variable: $\beta_{t}(i):=P\left[O_{t+1}^{T}=o_{t+1}^{T} \mid Q_{t}=i, \lambda\right]$
- Probability to observe emissions o_{t+1}, \ldots, o_{T} given state i at time step t
- Algorithm

Initialization

$$
\forall i \in S: \quad \beta_{T}(i)=1
$$

Iteration

$$
\forall T>t \geq 1 \forall i \in S: \quad \beta_{t}(i)=\sum_{j \in S} a_{i j} \cdot b_{j}\left(o_{t+1}\right) \cdot \beta_{t+1}(j)
$$

Probability of state i at time step t for given emission sequence o?

Backward-Algorithm

- Runtime
- $\beta_{t}(i)$ in $\mathcal{O}(|S|)$
- $|S|$ Backward-Variables $\beta_{t}(i)$ per time step t
- T time steps in total
- Backward-Algorithm requires $\mathcal{O}\left(T \cdot|S|^{2}\right)$

Gamma-Variable

$$
\gamma_{t}(i)=\frac{\alpha_{t}(i) \cdot \beta_{t}(i)}{P[O=o \mid \lambda]}
$$

- $P[O=o \mid \lambda]=\sum_{i \in S} P\left[O=o, Q_{t}=i \mid \lambda\right]=\sum_{i \in S} \alpha_{t}(i) \cdot \beta_{t}(i)$

Probability of state i at time step t for given emission sequence o?

Gamma-Variable

- requires Forward and Backward-Algorithm for efficient computation
- usage
- posterior decoding
- required for training
- test implementation
- $\forall 1 \leq t \leq T: \quad \sum_{i \in S} \gamma_{t}(i)=1$

Probability of a transition from state i to state j at time step t for given emission sequence o?

Epsilon-Variable

$$
\begin{aligned}
\varepsilon_{t}(i, j): & =P\left[Q_{t}=i, Q_{t+1}=j \mid O=o, \lambda\right] \\
& =\frac{\alpha_{t}(i) \cdot a_{i j} \cdot b_{j}\left(o_{t+1}\right) \cdot \beta_{t+1}(j)}{P[O=o \mid \lambda]}
\end{aligned}
$$

How to do???

$$
\begin{aligned}
P\left[Q_{t}=i, Q_{t+1}=j \mid O=o, \lambda\right]= & P\left[O_{t+2}^{T}=o_{t+2}^{T} \mid Q_{t+1}=j, Q_{t}=i, o_{1}^{t+1}=o_{1}^{t+1}, \lambda\right] \\
& \cdot P\left[O_{t+1}=o_{t+1} \mid Q_{t+1}=j, Q_{t}=i, o_{1}^{t}=o_{1}^{t}, \lambda\right] \cdot P\left[Q_{t+1}=j \mid Q_{t}=i, o_{1}^{t}=o_{1}^{t}, \lambda\right] \\
& \cdot P\left[O_{1}^{t}=o_{1}^{t}, Q_{t}=i \mid \lambda\right] \\
= & P\left[O_{t+2}^{T}=o_{t+2}^{T} \mid Q_{t+1}=j, \lambda\right] \\
& \cdot P\left[O_{t+1}=o_{t+1} \mid Q_{t+1}=j, \lambda\right] \cdot P\left[Q_{t+1}=j \mid Q_{t}=i, \lambda\right] \\
& \cdot P\left[O_{1}^{t}=o_{1}^{t}, Q_{t}=i \mid \lambda\right] \\
= & \beta_{t+1}(j) \\
& \cdot b_{j}\left(o_{t+1}\right) \cdot a_{i j} \\
& \cdot \alpha_{t}(i)
\end{aligned}
$$

Probability of a transition from state i to state j at time step t for given emission sequence o ?

Epsilon-Variable

- requires Forward and Backward-Algorithm for efficient computation
- usage
- required for training
- test implementation
- $\forall 1 \leq t<T: \quad \sum_{j \in S} \varepsilon_{t}(i, j)=\gamma_{t}(i)$

Most probable state sequence q^{*} for a given emission sequence o under HMM λ ?

Viterbi-Path

$$
\begin{aligned}
q^{*} & =\underset{q \in S^{T}}{\operatorname{argmax}} P[Q=q \mid O=o, \lambda] \\
& =\underset{q \in S^{T}}{\operatorname{argmax}} \frac{P[O=o, Q=q \mid \lambda]}{P[O=o \mid \lambda]} \\
& =\underset{q \in S^{T}}{\operatorname{argmax}} P[O=o, Q=q \mid \lambda]
\end{aligned}
$$

Most probable state sequence q^{*} for a given emission sequence o under HMM λ ?

Naive Approach

- emission sequence $o=o_{1}, \ldots, o_{T}$
- use Complete-Data-Likelihood $P[O=o, Q=q \mid \lambda]$
- compute Complete-Data-Likelihood for all $|S|^{T}$ state sequences q

$$
q^{*}=\underset{q \in S^{T}}{\operatorname{argmax}} P[O=o, Q=q \mid \lambda]
$$

- problem: number of state sequences grows exponential with the length of the emission sequence
- runtime: $\mathcal{O}\left(T \cdot|S|^{T}\right)$

Most probable state sequence q^{*} for a given emission

 sequence o under HMM λ ?Viterbi-Algorithm

- dynamic programming
- most probable state sequence q^{*} consists of most probable subsequences
- basics

Delta-Variable: probability of most probable subsequence $q_{1}, \ldots q_{t-1}, i$ for emissions o_{1}, \ldots, o_{t}

$$
\delta_{t}(i)=\max _{q_{1}^{t-1} \in S^{t-1}} P\left[O_{1}^{t}=o_{1}^{t}, Q_{1}^{t-1}=q_{1}^{t-1}, Q_{t}=i \mid \lambda\right]
$$

Psi-Variable: pointer for trace back

$$
\Psi_{t}(i)=\underset{j \in S}{\operatorname{argmax}} \delta_{t-1}(j) \cdot a_{j i}
$$

Most probable state sequence q^{*} for a given emission

 sequence o under HMM λ ?Viterbi-Algorithm

- Algorithm

Initialization: $\forall i \in S$

$$
\delta_{1}(i)=\pi_{i} \cdot b_{i}\left(o_{1}\right)
$$

Iteration: $\forall 1 \leq t<T \forall i \in S$

$$
\begin{aligned}
\delta_{t+1}(i) & =\max _{j \in S}\left(\delta_{t}(j) \cdot a_{j i}\right) \cdot b_{i}\left(o_{t+1}\right) \\
\Psi_{t+1}(i) & =\underset{j \in S}{\operatorname{argmax}} \delta_{t}(j) \cdot a_{j i}
\end{aligned}
$$

Most probable state sequence q^{*} for a given emission

 sequence o under HMM λ ?Reconstruction of Viterbi-Path

- use pointer for trace back
- reconstruction

Initialization

$$
q_{T}^{*}=\underset{j \in S}{\operatorname{argmax}} \delta_{T}(j)
$$

Iteration: $\forall T \geq t \geq 2$

$$
q_{t-1}^{*}=\Psi_{t}\left(q_{t}^{*}\right)
$$

Most probable state sequence q^{*} for a given emission sequence o under HMM λ ?

Viterbi-Algorithm Runtime

- $\delta_{t}(i)$ and $\Psi_{t}(i)$ in $\mathcal{O}(|S|)$
- $|S| \delta_{t}(i)^{\prime} s$ and $\Psi_{t}(i)^{\prime} s$ per time step
- in total T time steps
- reconstruction in $\mathcal{O}(T)$
- Viterbi-Algorithm computes Viterbi-Path in $\mathcal{O}\left(T N^{2}+T\right)$

Maximum Likelihood estimation of HMM λ ?

Parameter Estimation if state sequence is known

- emission sequence $o=o_{1}, \ldots, o_{T}$
- state sequence $q=q_{1}, \ldots, q_{T}$
- maximize Complete-Data-Likelihood $P[O=o, Q=q \mid \lambda]$
- Maximum Likelihood Estimators

$$
\begin{aligned}
\pi_{i} & =\left|\left\{i: q_{1}=i\right\}\right| \\
a_{i j} & =\frac{\left|\left\{t: 1 \leq t<T \wedge q_{t}=i \wedge q_{t+1}=j\right\}\right|}{\left|\left\{t: 1 \leq t<T \wedge q_{t}=i\right\}\right|} \\
b_{i}(j) & =\frac{\left|\left\{t: 1 \leq t \leq T \wedge o_{t}=j \wedge q_{t}=i\right\}\right|}{\left|\left\{t: 1 \leq t \leq T \wedge q_{t}=i\right\}\right|}
\end{aligned}
$$

Maximum Likelihood estimation of HMM λ ?

Parameter Estimation if state sequence is known

- pseudocounts or Maximum Aposterior Estimation
- Try it with M independent pairs o^{m} and q^{m} !

$$
P[O=o, Q=q \mid \lambda]=\prod_{m=1}^{M} P\left[O=o_{m}, Q=q_{m} \mid \lambda\right]
$$

- Problem!!!
- state sequence q is not known in most cases

Maximum Likelihood estimation of HMM λ ?

Parameter Estimation if state sequence is unknown

- emission sequence $o=o_{1}, \ldots, o_{T}$
- maximize Likelihood $P[O=o \mid \lambda]$

$$
\begin{aligned}
\lambda^{*} & =\underset{\lambda}{\operatorname{argmax}} P[O=o \mid \lambda] \\
& =\underset{\lambda}{\operatorname{argmax}} \log (P[O=o \mid \lambda])
\end{aligned}
$$

Maximum Likelihood estimation of HMM λ ?

Parameter Estimation if state sequence is unknown

- Likelihood and Log-Likelihood

$$
\begin{gathered}
P[O=o \mid \lambda]=\sum_{q \in S^{T}} P[O=o, Q=q \mid \lambda] \\
\log (P[O=o \mid \lambda])=\log \left(\sum_{q \in S^{T}} P[O=o, Q=q \mid \lambda]\right)
\end{gathered}
$$

- logarithm of a sum is bad

Maximum Likelihood estimation of HMM λ ?

Parameter Estimation if state sequence is unknown

- iterative training
- Baum-Welch algorithm
- special case of EM algorithm
- finds local maximum
- initial HMM λ^{1} leads to a stepwise series of HMMs $\lambda^{1}, \lambda^{2}, \ldots, \lambda^{*}$ that fulfill

$$
P\left[O=o \mid \lambda^{1}\right] \leq P\left[O=o \mid \lambda^{2}\right] \leq \ldots \leq P\left[O=o \mid \lambda^{*}\right]
$$

Maximum Likelihood estimation of HMM λ ?

Parameter Estimation if state sequence is unknown

- Baum-Welch algorithm
- Start with HMM λ^{1} and determine HMM λ^{2}
- Use HMM λ^{2} like HMM λ^{1} and determine λ^{3}
- iterate or stop if change in Likelihood is less than a threshold
- Likelihood-Series converge to local maximum
- try different initial HMMs λ^{1}

Maximum Likelihood estimation of HMM λ ?

Parameter Estimation if state sequence is unknown

- assume we know a state sequence q

$$
P[Q=q \mid O=o, \lambda]=\frac{P[O=o, Q=q \mid \lambda]}{P[O=o \mid \lambda]}
$$

- now we have another formula for Log-Likelihood

$$
\begin{aligned}
\log (P[O=o \mid \lambda])= & \log (P[O=o, Q=q \mid \lambda]) \\
& -\log (P[Q=q \mid O=o, \lambda])
\end{aligned}
$$

Maximum Likelihood estimation of HMM λ ?

Parameter Estimation if state sequence is unknown

- now we assume that we have the HMM λ^{h} of training step h
- recall λ^{1} is the initial HMM
- basis

$$
\begin{aligned}
\log (P[O=o \mid \lambda])= & \log (P[O=o, Q=q \mid \lambda]) \\
& -\log (P[Q=q \mid O=o, \lambda])
\end{aligned}
$$

- multiply with $P\left[Q=q \mid O=o, \lambda^{h}\right]$

$$
\begin{aligned}
& P\left[Q=q \mid O=o, \lambda^{h}\right] \cdot \log (P[O=o \mid \lambda]) \\
& =P\left[Q=q \mid O=o, \lambda^{h}\right] \cdot \log (P[O=o, Q=q \mid \lambda]) \\
& \quad-P\left[Q=q \mid O=o, \lambda^{h}\right] \cdot \log (P[Q=q \mid O=o, \lambda])
\end{aligned}
$$

Maximum Likelihood estimation of HMM λ ?

Parameter Estimation if state sequence is unknown

- marginalize over all state sequences $q \in S^{T}$

$$
\begin{aligned}
\log (P[O= & o \mid \lambda]) \\
= & \sum_{q \in S^{\top}} P\left[Q=q \mid O=o, \lambda^{h}\right] \cdot \log (P[O=o, Q=q \mid \lambda]) \\
& -\sum_{q \in S^{\top}} P\left[Q=q \mid O=o, \lambda^{h}\right] \cdot \log (P[Q=q \mid O=o, \lambda]) \\
= & Q\left(\lambda \mid \lambda^{h}\right) \\
& -\sum_{q \in S^{\top}} P\left[Q=q \mid O=o, \lambda^{h}\right] \cdot \log (P[Q=q \mid O=o, \lambda])
\end{aligned}
$$

- Quasi-Log-Likelihood $Q\left(\lambda \mid \lambda^{h}\right)$

Maximum Likelihood estimation of HMM λ ?

Parameter Estimation if state sequence is unknown

- difference of Log-Likelihoods must be positive to improve the Log-Likelihood of HMM λ in comparison with the Log-Likelihood of HMM λ^{h}

$$
\log (P[O=o \mid \lambda])-\log \left(P\left[O=o \mid \lambda^{h}\right]\right) \stackrel{!}{\geq} 0
$$

- rewrite difference of Log-Likelihoods

$$
\begin{aligned}
& \log (P[O=o \mid \lambda])-\log \left(P\left[O=o \mid \lambda^{h}\right]\right) \\
& \quad=Q\left(\lambda \mid \lambda^{h}\right)-\sum_{q \in S^{T}} P\left[Q=q \mid O=o, \lambda^{h}\right] \log (P[Q=q \mid O=o, \lambda]) \\
& \quad-Q\left(\lambda^{h} \mid \lambda^{h}\right)+\sum_{q \in S^{T}} P\left[Q=q \mid O=o, \lambda^{h}\right] \log \left(P\left[Q=q \mid O=o, \lambda^{h}\right]\right)
\end{aligned}
$$

Maximum Likelihood estimation of HMM λ ?

Parameter Estimation if state sequence is unknown

- rewrite difference

$$
\begin{aligned}
& \log (P[O=o \mid \lambda])-\log \left(P\left[O=o \mid \lambda^{h}\right]\right) \\
& \quad=Q\left(\lambda \mid \lambda^{h}\right)-Q\left(\lambda^{h} \mid \lambda^{h}\right) \\
& \quad+\quad \underbrace{\sum_{q \in S^{\top}} P\left[Q=q \mid O=o, \lambda^{h}\right] \log \left(\frac{P\left[Q=q \mid O=o, \lambda^{h}\right]}{P[Q=q \mid O=o, \lambda]}\right)}_{\geq 0} \\
& \quad \geq Q\left(\lambda \mid \lambda^{h}\right)-Q\left(\lambda^{h} \mid \lambda^{h}\right)
\end{aligned}
$$

- $Q\left(\lambda^{h} \mid \lambda^{h}\right)$ is constant
- choose HMM

$$
\lambda^{h+1}=\underset{\lambda}{\operatorname{argmax}} Q\left(\lambda \mid \lambda^{h}\right)
$$

Maximum Likelihood estimation of HMM λ ?

Parameter Estimation if state sequence is unknown

- theoretical basics of the Baum-Welch algorithm are known :-)
- now we maximize the Quasi-Log-Likelihood function $Q\left(\lambda \mid \lambda^{h}\right)$

$$
Q\left(\lambda \mid \lambda^{h}\right)=\sum_{q \in S^{\top}} P\left[Q=q \mid O=o, \lambda^{h}\right] \cdot \log (P[O=o, Q=q \mid \lambda])
$$

- splitting into three independent functions
- start parameters
- transition parameters
- emission parameters

Maximum Likelihood estimation of HMM λ ?

Parameter Estimation if state sequence is unknown

$$
\begin{aligned}
Q\left(\lambda \mid \lambda^{h}\right)= & \sum_{q \in S^{T}} P\left[Q=q \mid O=o, \lambda^{h}\right] \cdot \log (P[O=o, Q=q \mid \lambda]) \\
= & \sum_{q \in S^{T}} P\left[Q=q \mid O=o, \lambda^{h}\right] \cdot \log \left(\pi_{q_{1}} \cdot \prod_{t=1}^{T-1} a_{q_{t} q_{t+1}} \cdot \prod_{t=1}^{T} b_{q_{t}}\left(o_{t}\right)\right) \\
= & \sum_{q \in S^{T}} P\left[Q=q \mid O=o, \lambda^{h}\right] \log \left(\pi_{q_{1}}\right) \\
& +\sum_{q \in S^{T}} P\left[Q=q \mid O=o, \lambda^{h}\right] \cdot \log \left(\prod_{t=1}^{T-1} a_{q_{t} q_{t+1}}\right) \\
& +\sum_{q \in S^{T}} P\left[Q=q \mid O=o, \lambda^{h}\right] \cdot \log \left(\prod_{t=1}^{T} b_{q_{t}}\left(o_{t}\right)\right) \\
:= & Q_{\pi}\left(\lambda \mid \lambda^{h}\right)+Q_{a}\left(\lambda \mid \lambda^{h}\right)+Q_{b}\left(\lambda \mid \lambda^{h}\right)
\end{aligned}
$$

Maximum Likelihood estimation of HMM λ ?

Parameter Estimation if state sequence is unknown

- rewrite function for start parameters

$$
\begin{aligned}
Q_{\pi}\left(\lambda \mid \lambda^{h}\right) & =\sum_{q \in S^{T}} P\left[Q=q \mid O=o, \lambda^{h}\right] \cdot \log \left(\pi_{q_{1}}\right) \\
& =\sum_{i \in S} \sum_{\substack{q \in S^{T} \\
q_{1}=i}} P\left[Q=q \mid O=o, \lambda^{h}\right] \cdot \log \left(\pi_{q_{1}}\right) \\
& =\sum_{i \in S} \log \left(\pi_{i}\right) \cdot P\left[Q_{1}=i \mid O=o, \lambda^{h}\right] \\
& =\sum_{i \in S} \log \left(\pi_{i}\right) \cdot \gamma_{1}(i)
\end{aligned}
$$

Maximum Likelihood estimation of HMM λ ?

Parameter Estimation if state sequence is unknown

- rewrite function for transition parameters

$$
\begin{aligned}
Q_{a}\left(\lambda \mid \lambda^{h}\right) & =\sum_{q \in S^{T}} P\left[Q=q \mid O=o, \lambda^{h}\right] \cdot \log \left(\prod_{t=1}^{T-1} a_{q_{t} q_{t+1}}\right) \\
& =\sum_{t=1}^{T-1} \sum_{q \in S^{T}} P\left[Q=q \mid O=o, \lambda^{h}\right] \cdot \log \left(a_{q_{t} q_{t+1}}\right) \\
& =\sum_{i \in S} \sum_{j \in S} \sum_{t=1}^{T-1} \sum_{q_{q \in S^{T}}} P\left[Q=q \mid O=o, \lambda^{h}\right] \cdot \log \left(a_{q_{t} q_{t+1}}\right) \\
& =\sum_{i \in S} \sum_{j \in S} \sum_{t=1}^{T-1} \log \left(a_{i j}\right) \cdot P\left[Q_{t}=i, Q_{t+1}=j \mid O=o, \lambda^{h}\right] \\
& =\sum_{i \in S} \sum_{j \in S} \log \left(a_{i j}\right) \cdot \sum_{t=1}^{T-1} \varepsilon_{t}(i, j)
\end{aligned}
$$

Maximum Likelihood estimation of HMM λ ?

Parameter Estimation if state sequence is unknown

- rewrite function for emission parameters

$$
\begin{aligned}
Q_{b}\left(\lambda \mid \lambda^{h}\right) & =\sum_{q \in S^{T}} P\left[Q=q \mid O=o, \lambda^{h}\right] \cdot \log \left(\prod_{t=1}^{T} b_{q_{t}}\left(o_{t}\right)\right) \\
& =\sum_{t=1}^{T} \sum_{q \in S^{T}} P\left[Q=q \mid O=o, \lambda^{h}\right] \cdot \log \left(b_{q_{t}}\left(o_{t}\right)\right) \\
& =\sum_{i \in S} \sum_{j \in \Sigma} \sum_{\substack{t=1 \\
o_{t}=j}}^{T} \sum_{\substack{q \in S^{T} \\
q_{t}=i}} P\left[Q=q \mid O=o, \lambda^{h}\right] \cdot \log \left(b_{q_{t}}\left(o_{t}\right)\right) \\
& =\sum_{i \in S} \sum_{j \in \Sigma} \log \left(b_{i}(j)\right) \cdot \sum_{\substack{t=1 \\
o_{t}=j}}^{T} P\left[Q_{t}=i \mid O=o, \lambda^{h}\right] \\
& =\sum_{i \in S} \sum_{j \in \Sigma} \log \left(b_{i}(j)\right) \cdot \sum_{\substack{t=1 \\
o_{t}=j}}^{T} \gamma_{t}(i)
\end{aligned}
$$

Maximum Likelihood estimation of HMM λ ?

Parameter Estimation if state sequence is unknown

- independent maximization under stochastic side conditions
- function for start parameters $Q_{\pi}\left(\lambda \mid \lambda^{h}\right)$
- function for transition parameters $Q_{a}\left(\lambda \mid \lambda^{h}\right)$
- function for emission parameters $Q_{b}\left(\lambda \mid \lambda^{h}\right)$

Maximum Likelihood estimation of HMM λ ?

Parameter Estimation if state sequence is unknown

- Function for Start Parameters

$$
\begin{aligned}
Q_{\pi}\left(\lambda \mid \lambda^{h}\right) & =\left(\sum_{i \in S} \log \left(\pi_{i}\right) \gamma_{1}(i)\right)-\kappa\left(-1+\sum_{i \in S} \pi_{i}\right) \\
\frac{\partial Q_{\pi}\left(\lambda \mid \lambda^{h}\right)}{\partial \pi_{i}} & =\frac{\gamma_{1}(i)}{\pi_{i}}-\kappa \stackrel{!}{=} 0 \\
\pi_{i} & =\frac{\gamma_{1}(i)}{\kappa} \\
1 & =\sum_{i \in S} \frac{\gamma_{1}(i)}{\kappa} \quad \leftrightarrow \quad \kappa=\sum_{i \in S} \gamma_{1}(i) \\
\pi_{i}^{h+1} & =\frac{\gamma_{1}(i)}{\sum_{i \in S} \gamma_{1}(i)}=\gamma_{1}(i)
\end{aligned}
$$

Maximum Likelihood estimation of HMM λ ?

Parameter Estimation if state sequence is unknown

- Function for Transition Parameters

$$
\begin{aligned}
Q_{a}\left(\lambda \mid \lambda^{h}\right) & =\left(\sum_{i \in S} \sum_{j \in S} \log \left(a_{i j}\right) \sum_{t=1}^{T-1} \varepsilon_{t}(i, j)\right)-\kappa_{i}\left(-1+\sum_{j \in S} a_{i j}\right) \\
\frac{\partial Q_{a}\left(\lambda \mid \lambda^{h}\right)}{\partial a_{i j}}= & \frac{\sum_{t=1}^{T-1} \varepsilon_{t}(i, j)}{a_{i j}}-\kappa_{i} \stackrel{!}{=} 0 \\
a_{i j} & =\frac{\sum_{t=1}^{T-1} \varepsilon_{t}(i, j)}{\kappa_{i}} \\
1 & =\sum_{j \in S} \frac{\sum_{t=1}^{T-1} \varepsilon_{t}(i, j)}{\kappa_{i}} \leftrightarrow \quad \kappa_{i}=\sum_{t=1}^{T-1} \gamma_{t}(i) \\
a_{i j}^{h+1}= & \frac{\sum_{t=1}^{T-1} \varepsilon_{t}(i, j)}{\sum_{t=1}^{T-1} \gamma_{t}(i)}
\end{aligned}
$$

Maximum Likelihood estimation of HMM λ ?

Parameter Estimation if state sequence is unknown

- Function for Emission Parameters

$$
\begin{aligned}
& Q_{b}\left(\lambda \mid \lambda^{h}\right)=\left(\sum_{i \in S} \sum_{j \in \Sigma} \log \left(b_{i}(j)\right) \sum_{\substack{t=1 \\
o_{t}=j}}^{T} \gamma_{t}(i)\right)-\kappa_{i}\left(-1+\sum_{j \in \Sigma} b_{i}(j)\right) \\
& \frac{\partial Q_{b}\left(\lambda \mid \lambda^{h}\right)}{\partial b_{i}(j)}= \frac{\sum_{\substack{t=1 \\
o_{t}=j}}^{T} \gamma_{t}(i)}{b_{i}(j)}-\kappa_{i} \stackrel{!}{=} 0 \\
& \sum_{\substack{t=1 \\
o_{t}}}^{T} \gamma_{t}(i) \\
& b_{i}(j)= \kappa_{i} \\
& o_{i}=\sum_{j \in \Sigma} \frac{\sum_{t=1}^{o_{t}=j} \kappa_{i}}{o_{t}} \gamma_{t}(i)
\end{aligned} \kappa_{i}=\sum_{j \in \Sigma} \sum_{\substack{t=1 \\
o_{t}=j}}^{T} \gamma_{t}(i)=\sum_{t=1}^{T} \gamma_{t}(i)
$$

Maximum Likelihood estimation of HMM λ ?

Parameter Estimation if state sequence is unknown

- Maximization
- π_{i}^{h+1} maximizes $Q_{\pi}\left(\lambda \mid \lambda^{h}\right)$
- $a_{i j}^{h+1}$ maximizes $Q_{a}\left(\lambda \mid \lambda^{h}\right)$
- $b_{i}(j)^{h+1}$ maximizes $Q_{b}\left(\lambda \mid \lambda^{h}\right)$
- proof: hessian matrix
- Baum-Welch algorithm for M independent emission sequences o^{1}, \ldots, o^{M}

$$
P\left[O^{1}=o^{1}, \ldots, O^{M}=o^{M} \mid \lambda\right]=\prod_{m=1}^{M} P\left[O^{m}=o^{m} \mid \lambda\right]
$$

Maximum Likelihood estimation of HMM λ ?

Parameter Estimation if state sequence is unknown

- Baum-Welch algorithm - Overview
- Initialization
- Initialize model parameters for HMM λ^{1}
- Iteration
- Compute $\varepsilon_{t}(i, j)$ and $\gamma_{t}(i)$ for emission sequence o
- Compute $\pi_{i}^{h+1}, a_{i j}^{h+1}$ and $b_{i}(j)^{h+1}$
- Compute Likelihood $P\left[O=o \mid \lambda^{h+1}\right]$ under HMM λ^{h+1}
- Stop
- If $P\left[O=o \mid \lambda^{h+1}\right]-P\left[O=o \mid \lambda^{h}\right] \leq \alpha$ or a given number of iterations is reached

CpG Islands - Detection using HMMs

Two-State HMM

- Use first order emission probabilities
- O_{1} is independent of O_{2}, \ldots, O_{T}
- O_{1} depends on Q_{1}
- O_{t+1} depends on O_{t} and Q_{t+1}
- Try to modify the standard algorithms using

Complete-Data-Likelihood

$$
P[O=o, Q=q \mid \lambda]=\pi_{q_{1}} \cdot \prod_{t=1}^{T-1} a_{q_{t} q_{t+1}} \cdot b_{q_{1}}\left(o_{1}\right) \cdot \prod_{t=1}^{T-1} b_{q_{t+1}}\left(o_{t+1} \mid o_{t}\right)
$$

CpG Islands - Detection using HMMs

Two-State HMM

- choose initial model parameters from known CpG Island and background sequences
- detect CpG Islands in emission sequence o^{m} using Viterbi-Algorithm
- Viterbi-Path $q^{*}=q_{1}^{*}, \ldots, q_{T}^{*}$
- all $q_{t}^{*}=C p G^{+}$are potential CpG Islands

Literatur

(Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchision. Biological sequence analysis - Probabilistic models of proteins and nucleic acids.

Cambridge University Press, 1998.
R. Rabiner.

A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition.

Proceedings of the IEEE, 77(2):257-286, February 1989.

