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Abstract. The MEME algorithm extends the expectation maximization (EM) algorithm for identifying motifs
in unaligned biopolymer sequences. The aim of MEME is to discover new motifs in a set of biopolymer
sequences where little or nothing is known in advance about any motifs that may be present. MEME
innovations expand the range of problems which can be solved using EM and increase the chance of finding
good solutions. First, subsequences which actually occur in the biopolymer sequences are used as starting
points for the EM algorithm to increase the probability of finding globally optimal motifs. Second, the
assumption that each sequence contains exactly one occurrence of the shared motif is removed. This allows
multiple appearances of a motif to occur in any sequence and permits the algorithm to ignore sequences with
no appearance of the shared motif, increasing its resistance to noisy data. Third, a method for probabilistically
erasing shared motifs after they are found is incorporated so that several distinct motifs can be found in the
same set of sequences, both when different motifs appear in different sequences and when a single sequence
may contain multiple motifs. Experiments show that MEME can discover both the CRP and LexA binding
sites from a set of sequences which contain one or both sites, and that MEME can discover both the -10
and —35 promoter regions in a set of E. coli sequences.
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1. Introduction

The problem addressed by this work is that of identifying and characterizing shared
motifs in a set of unaligned genetic or protein sequences. A motif is defined here as
a pattern common to a set of nucleic or amino acid subsequences which share some
biological property of interest such as being DNA binding sites for a regulatory protein.
In computer science terminology, the problem is, given a set of strings, to find a set
of non-overlapping, approximately matching substrings. In this report we are concerned
only with contiguous motifs. In biological terms, this means that appearances of a motif
may differ in point mutations, but insertions or deletions are not allowed. In computer
science terms, this means that the approximately matching substrings must all have
the same length. A simpler version of the problem is, given a dataset of biopolymer
sequences believed to contain a single shared motif, to locate the starting position in each
sequence of the appearance of the shared motif and to describe the shared motif. This
report addresses the more general problem of finding and describing multiple, distinct
shared motifs in a set of biopolymer sequences. It is not assumed that anything is known
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in advance about the width, position or letter frequencies of the motifs, or even how
many common motifs may exist in a set of sequences.

Several methods have been presented in the literature which work on problems related
to discovering multiple, distinct shared motifs in a set of biological sequences. The
purpose of this research is to extend the range of problems that can be attacked. Hertz
el al. (1990) presented a greedy algorithm for discovering a single, shared motif that
is present once in each of a set of sequences. Lawrence and Reilly (1990) extended
that work by developing an expectation maximization (EM) algorithm for solving the
same problem. Lawrence et al. (1993) solve the related problem of discovering multiple,
distinct motifs when the number of occurrences of each motif in each sequence is known
using a Gibbs sampling strategy.

This report describes MEME, a new tool intended to help discover motifs when neither
the number of motifs nor the number of occurrences of each motif in each sequence is
known.1 MEME incorporates three novel ideas for discovering motifs.

• First, subsequences which actually occur in the input DNA or protein sequences are
used as the starting points from which EM converges iteratively to locally optimal
motifs. This increases the likelihood of finding globally optimal motifs.

• Second, a heuristic modification of the EM algorithm allows the assumption that
each sequence contains exactly one occurrence of the shared motif to be removed.
This allows multiple appearances of a motif to occur in any sequence and permits the
algorithm to ignore sequences with no appearance of a shared motif, which increases
its resistance to noisy data.

• Third, motifs are probabilistically erased after they are found. This allows several
distinct motifs to be found in the same set of sequences, both when different motifs
appear in different sequences and when a single sequence may contain multiple
motifs.

1.1. Searching tools versus learning tools

This section explains the place of MEME, in the spectrum of sequence analysis tools.
Experts on biological sequence analysis may wish to skip directly to the next section.

Searching tools. Sequence analysis tools may be divided into two broad categories,
searching tools and learning tools. GRAIL, BLASTX, FASTA, etc. are searching tools,
whereas MEME is a learning tool. A searching tool (also called a pattern-matching tool)
takes as input one or more sequences and a pattern, and decides if the pattern matches
each input sequence, and if so, where. The pattern may be (i) another sequence, as with
BLASTX and FASTA, (ii) a consensus subsequence or regular expression defining a motif,
as with ProSearch (Kolakowski, et al., 1992), or (iii) a more high-level combination of
features, as with GRAIL (Uberbacher & Mural, 1991).

Learning tools. A supervised learning tool (also called a supervised pattern-recognition
tool) takes as input a set of sequences, and discovers a pattern that all the sequences
share. Supervised learning is often done by humans rather than by software, because
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it is an open-ended problem that is harder than searching. For example, the PROSITE
profiles were created by Amos Bairoch by personally examining families of proteins
(Bairoch, 1993).

An unsupervised learning tool takes as input a set of sequences, and discovers a pattern
that some of the sequences share. Unsupervised learning is harder than supervised learn-
ing because the space of possible patterns is much larger. The pattern to be discovered
is not required to be in any given input sequence, so the unsupervised learning algorithm
must simultaneously look for a cluster of input sequences and a pattern that the members
of this cluster do have in common. MEME performs unsupervised learning.

The output of a learning tool, namely a pattern, is often given to a search tool in order
to find new sequences that exhibit the pattern. However, even if all the members of a
family of sequences are already known, applying a learning tool to the family can still
be useful, because examining the patterns that subsets of the family have in common can
give insight into structure, function, and evolution.

1.2. The expectation maximization (EM) algorithm

Lawrence and Reilly (Lawrence & Reilly, 1990) introduced the expectation maximiza-
tion method as a means of solving a supervised motif learning problem. Their algorithm
takes as input a set of unaligned sequences and a motif length (W) and returns a prob-
abilistic model of the shared motif. The idea behind the method is that each sequence
in the dataset contains a single example of the motif. We shall refer to this model of
the data as the 'one-occurrence-per-sequence' model or just the 'one-per' model. It is
assumed that where the motif appears (what its starting offset is) in each example is
unknown. If this were known, subsequences of length W from each sequence starting
at the known offset could be aligned, since no insertions or deletions are allowed, and
the observed frequencies of the letters in each column of the alignment could be used as
a model of the motif.

In fact, if each example of the motif is assumed to have been generated by a sequence
of independent, discrete random variables, then the observed frequencies of the letters
in the columns are the maximum likelihood estimates of the distributions of the random
variables. Of course, since the original sequences in the dataset are unaligned, the offsets
are not known, so they must also be estimated. To do this, the EM algorithm estimates
the probability that the shared motif starts in position j in sequence i in the dataset, given
the data and an initial guess at a description of the motif. These probability estimates,
Zij, are then used to reestimate the probability of letter l in column c of the motif, plc, for
each letter in the alphabet and 1 < c < W. How the reestimations are done is described
in the Appendix. The EM algorithm alternately reestimates z and p until p changes very
little from iteration to iteration. (The notation z is used to refer to the matrix of offset
probabilities zij. Likewise, p refers to the matrix of letter probabilities pij.)

A pseudo-code description of the basic EM algorithm is given below. EM starts from
an estimate of the model parameters, p, provided by the user or generated at random.
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1. EM (dataset, W) {
2. choose starting point (p)

3. do {

4. reestimate z from p
5. reestimate p from z

6. } until (change in p < e)

7. return

8. }

The EM algorithm simultaneously discovers a model of the motif (the sequence of
independent discrete random variables with parameters p) and estimates the probability
of each possible starting point of examples of the motif in the sequences in the dataset
(z). By definition (Duda & Hart, 1973), the likelihood of the model given the training
data is the probability of the data given the model. The EM algorithm finds values of the
model parameters which maximize the expected likelihood of the data given the model
p, and the missing data z. For the one-occurrence-per-sequence model of the data used
by Lawrence and Reilly (1990), the logarithm of the likelihood is

where N is the number of sequences in the dataset, L is the length of the sequences, W
is the length of the shared motif, £ is the alphabet of the sequences, plj is the (unknown)
probability of letter l in position j of the motif, plo is the (unknown) probability of letter
l in all non-motif positions, flj is the observed frequency of the letter l in position j of
the motif, and flo is the observed l in all non-motif positions of the sequences.

It has been shown that expectation maximization algorithms find values for the model
parameters at which the likelihood function assumes a local maximum (Dempster, et al.,
1977). It is reasonable to assume that the correct solution to the problem of characterizing
the shared motif occurs at the global maximum of the likelihood function. For this
reason, all else being equal, parameter values for the model which give higher values of
the likelihood function are considered better solutions to the problem.2

1.3. Limitations of EM and the one-occurrence-per-sequence model.

EM and the one-per model suffer from several limitations. First, it is not clear how to
choose a starting point (an initial value of p) nor when to quit trying different starting
points. This makes it difficult to be satisfied that the correct shared motif has been found.
Second, the one-per model assumes that each sequence in the dataset contains exactly one
appearance of the shared motif. This means that sequences with multiple appearances
will under-contribute, and sequences with no appearances will over-contribute to the
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characterization of the motif. Having many sequences with no appearances of the motif
in the dataset may make it impossible for EM with the one-per model to find the shared
motif at all. Finally, EM with the one-per model assumes that there is only one shared
motif in the sequences, and does not keep looking for further motifs after characterizing
one. This makes EM with the one-per model incapable of finding motifs with insertions
of variable length and incapable of discovering multiple motifs that may occur in the
same or different sequences in a given dataset. Eliminating or reducing these limitations
of EM with the one-per model would make the method less susceptible to noise in the
dataset, able to find more complex patterns in the data, and last but not least, useful for
exploring datasets which may contain instances of several different motifs.

The algorithm described in this report, MEME, extends the EM algorithm to overcome
the limitations described above. MEME chooses starting points systematically, based on
all subsequences of sequences in the training dataset. It allows the use of either the one-
per model or a different model which eliminates the assumption of one sequence/one
occurrence and allows each sequence to contain zero, one or several appearances of the
shared motif. We call this new model the 'n-occurrences-per-dataset' model or just the
'n-per' model, because the it assumes that the dataset contains exactly n occurrences
of the motif, where n is specified by the user. Finally, MEME probabilistically erases
the appearances of a motif after it is found, and continues searching for further shared
motifs in the dataset.

The MEME algorithm with the n-per model was tested on two datasets. The first was a
dataset combining 18 E. coli sequences containing CRP binding sites (Lawrence & Reilly,
1990) and 16 sequences containing LexA binding sites (Hertz, et al., 1990). MEME dis-
covered the LexA binding site on its first pass and the CRP binding site on its second pass.
The second dataset contained 231 E. coli promoter sequences (Harley & Reynolds, 1987).3

MEME discovered the TATAAT and TTGACA consensus sequences4 on the first and second
passes, respectively. This demonstrates the ability of MEME to avoid local optima, to
tolerate large number of sequences which do not contain the motif, and to find multiple
motifs in a single dataset.

2. The MEME algorithm

The MEME algorithm has at its core a modified version of the EM algorithm (Lawrence &
Reilly, 1990). The pseudo-code for the algorithm is given below. In the inner loop, an
algorithm based on the EM algorithm is run repeatedly with different starting points for
the chosen model (either one-per model or n-per model). We shall refer to this particular
application of the EM algorithm as simply 'EM' in what follows. The starting points
are derived from actual subsequences which occur in the input dataset. EM is run only
one iteration, not to convergence, from each starting point to save time. Each run of
EM produces a probabilistic model of a possible shared motif. The starting point which
yields the model with the highest likelihood is chosen and EM is run to convergence from
this starting point. The model of the shared motif thus discovered is printed. Finally,
all appearances of the shared motif in the dataset are erased. The outer loop repeats the
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whole process to discover further shared motifs. The following sections describe each
of these steps of the algorithm in more detail.

1. MEME (dataset, W, NSITES, PASSES) {
2. f o r i = 1 to PASSES {
3. for each subsequence in dataset {

4. run EM for 1 iteration with starting point
5. derived from this subsequence
6. choose model of shared motif with highest likelihood
7. run EM to convergence from starting point
8. which generated that model
9. print converged model of shared motif

10. erase appearances of shared motif from dataset

11. }
12. }
13. }

The output of MEME includes a specificity or log-odds matrix, spec. The log-odds
matrix has L rows and W columns and is calculated as specij = l o g ( p i j / P o j ) for i e L
and j = 1 , . . . , W. The information content score of a subsequence is calculated by
summing the entries in the matrix corresponding to the letters in the subsequence.5 This
score gives a measure of the likelihood of the subsequence being an instance of the
motif versus an instance of the "background". Together with a suitable threshold, the
information content score, can be used to classify subsequences in new sequences not
part of the training set.

2.1. Using subsequences as starting points for EM

Given different starting points (i.e., initial letter probability matrices p) the EM algorithm
may converge to different final models. These models are local maxima of the likelihood
function described earlier. The correct model for the shared motif is expected to be the
model which globally maximizes the likelihood function, but EM is not guaranteed to
find the global maximum, only a local maximum. Previous authors (Lawrence & Reilly,
1990; Cardon & Stormo, 1992) have recommended using several starting points for EM
and choosing the model with the highest likelihood, but how to choose the starting points
has not been discussed in detail.

One might try using randomly chosen letter frequency matrices as starting points,
but the sequences in the dataset provide a way to choose more intelligent ones. Since
our models for motifs do not allow for insertions or deletions, the optimal model must
agree very well with some contiguous subsequences of the sequences in the dataset—
the instances of the motif in the sequences. A good way to search the space of possible
starting points for EM should thus be to convert each subsequence of length W into a letter
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probability matrix and use each such matrix as a starting point. This is the approach used
by MEME. Since the starting point letter frequency matrices obtained from subsequences
corresponding to the actual occurrences of the shared motif should be "close" to the
correct letter probability matrix (i.e., model), EM should tend to converge to the global
optimum when run with them as starting points.6

For example, suppose the unknown optimal value of p for the shared motif that we are
trying to discover using MEME is actually

letter

A
C
G
T

position in motif
1

0.1
0.1
0.2
0.6

2 3
0.8
0.1
0.0
0.1

0.1
0.1
0.1
0.7

4 5
0.5
0.3
0.1
0.1

0.6
0.2
0.1
0.1

6
0.1
0.1
0.1
0.7

and the consensus sequence is TATAAT. Presumably, this sequence or something close to
it (i.e., with few mutations) occurs in at least one of the sequences in the dataset. It is
reasonable to postulate that if we choose as a starting point for EM a letter probability
matrix derived in some simple manner from the consensus sequence, or a subsequence
similar to it, then EM should tend to converge to the optimal model. If we try all
of the subsequences (of length six in this example) of the sequences in the dataset, it
is reasonable to assume that at least one of them will be "close" to TATAAT and will
cause EM to converge to the optimal model. (Note that MEME does not use all possible
subsequences of a given length, just the ones which actually occur in the dataset.)

The question remains of how to convert a subsequence into a letter probability ma-
trix. One cannot simply convert it to a matrix with probability 1.0 for the letter in the
subsequence and 0.0 for all others, i.e., convert TATAAT to

letter

A
C
G
T

1
0.0
0.0
0.0
1.0

position
2

1.0
0.0
0.0
0.0

3
0.0
0.0
0.0
1.0

in motif
4
1.0
0.0
0.0
0.0

5
1.0
0.0
0.0
0.0

6
0.0
0.0
0.0
1.0

because the EM algorithm cannot move from such a starting point. With such a starting
point, all offset probabilities will be estimated to be 0.0 except for subsequences which
match the starting point subsequence exactly. This will cause reestimation of the letter
frequencies to yield the starting point again.

An effective, if somewhat arbitrary solution is to fix the frequency of the letter in the
subsequence at some value 0 < X < 1, and fix the frequencies of the other letters at
(1 - X ) / ( M -1) where M is the length of the alphabet. This ensures that the frequencies
in each column sum to 1.0 and that, for X close to 1.0, the starting point is "close" to the
subsequence. The results reported in this paper are for X = 0.5. Values of X between
0.4 and 0.8 worked approximately equally well (experimental data not shown). With this
value of X, the starting point for EM generated from the subsequence TATAAT is
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letter position in motif

A
C
G
T

1
0.17
0.17
0.17
0.5

2
0.5

0.17
0.17
0.17

3
0.17
0.17
0.17
0.5

4
0.5

0.17
0.17
0.17

5
0.5

0.17
0.17
0.17

6
0.17
0.17
0.17
0.5

It would be highly expensive computationally to run EM until convergence from every
possible starting point corresponding to some subsequence of length W in the input
dataset. It turns out that this is not necessary. EM converges so quickly from subse-
quences which are similar to the shared motif that the best starting point can often be
detected by running only one iteration of EM. As will be described below, MEME was
able to find shared motifs when run for only one iteration from each possible subse-
quence starting point, and then run until convergence from the starting point with the
highest likelihood. In other words, MEME runs EM for specified number of iterations
(one iteration in all the results reported here) on each subsequence starting point, chooses
the starting point that yields the highest likelihood, and then runs EM to convergence
from this starting point.

Since each iteration of the EM algorithm takes computation time roughly linear in the
size of the dataset, and the number of subsequences is linear in the size of the dataset,
MEME takes time O(n2) where n is the size of the dataset in characters.

2.2. Dealing with multiple appearances of a shared motif

MEME allows the user to specify that either the one-per model or the n-per model be
used. With the one-per model, MEME uses the EM algorithm of Lawrence and Reilly
(Lawrence & Reilly, 1990) to fit the model to the dataset. To fit the n-per model, a
heuristic modification of the EM algorithm is used.

The one-per model assumes that each sequence in the dataset contains exactly one
appearance of the shared motif to be characterized. This assumption determines the way
in which the offset probabilities are reestimated. The reestimation procedure ensures
that the offset probabilities for each sequence sum to 1.0. This means that if a given
sequence has more than one appearance of the shared motif, it cannot contribute any more
to the reestimation of the letter frequencies than a sequence with only one appearance.
Additionally, if a sequence has no appearances of the shared motif—a common event
when exploring for new shared motifs—it contributes erroneously to the reestimation of
the letter frequencies.

MEME modifies the EM algorithm a when fitting the n-per model to a dataset. Instead
of normalizing the reestimated offset probabilities to sum to 1.0 for each sequence, all
offset probabilities are normalized to sum to a user-supplied value NSITES, subject to
the constraint that no single offset probability may exceed 1.0. This normalization is
done over all sequences simultaneously, not sequence by sequence. The intent is for
NSITES to be the expected number of appearances of the shared motif in the dataset.
If NSITES is set equal to the number of sequences in the dataset, it is possible for the
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n-per model to get approximately the same results as the one-per model on a dataset
that has one appearance of the shared motif in each sequence. For datasets with the
appearances of the motif distributed other than one per sequence, the MEME with the
n-per model is able to choose models that assign the offset probabilities in any fashion
which satisfies the two constraints mentioned above.

The relaxation of the one motif appearance per sequence constraint in the n-per model
allows MEME to benefit from sequences with multiple appearances of the shared motif.
It also can help alleviate the problem of sequences which do not contain the motif
blurring its characterization. When NSITES is lower than the number of sequences in
the dataset, MEME can assign very low offset probabilities to all positions in a sequence
that does not contain the motif at all. By contrast, the one-per model must assign offset
probabilities summing to 1.0 to each sequence in the dataset. The effect of various
settings for NSITES is discussed in Section 4.3. In summary, the exact value chosen
for NSITES is not critical, so it is not necessary to know in advance exactly how many
times a motif is present in the dataset.

One side effect of allowing a single sequence to have offset probabilities that sum
to more than 1.0 is that long repeated sequences are seen by MEME using the n-per
model as though they were multiple appearances of a shorter sequence. For example,
if W is 6, the sequence AAAAAAAA is treated by the n-per model roughly as though it
were three appearances of the sequence AAAAAA. This is so because the n-per model
might allow offsets 1, 2 and 3 of the sequence to have the maximum probability of 1.0.
(The one-per model would not allow this, since the total offset probability for a single
sequence must sum to 1.0.) This is problematic because it is far more surprising to find
3 non-overlapping occurrences of the sequence AAAAAA than to find one occurrence of
sequence AAAAAAAA. So, we would like MEME to search for NSITES non-overlapping
occurrences of the motif. To overcome this difficulty, MEME enforces an additional
constraint when calculating the offset probabilities for the n-per model. It renormalizes
the offset probabilities so that no W adjacent offsets have probabilities that sum to greater
than 1.0. This essentially makes the n-per model treat sequences like AAAAAAAA the same
way as the one-per model does, assigning at most probability 1/3 to each of the three
offsets at which identical subsequences AAAAAA start.

2.3. Finding several shared motifs

When a single dataset of sequences contains more than one distinct shared motif, EM with
the one-per model cannot directly find more than one of them. If the motifs have some
similarity, EM may always converge to the most conserved motif.7 Another possibility is
that EM may converge to a model that describes part of the most conserved motif—its left
or right side for instance. The MEME algorithm solves this problem by probabilistically
erasing the shared motif found by EM and then repeating EM to find the next shared
motif. By effectively removing each motif as it is found, MEME is able to find the next
motif without interference from the more conserved motifs found first.

The manner in which MEME erases a motif is designed to be as continuous as possible.
New variables Wij are defined which associate a weight with position j in sequence i. The
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weights represent the probability that the given position in the given sequence is not part
of a motif previously discovered by MEME. The weights are all set initially to 1.0. After
MEME discovers a shared motif, the offset probability zij gives the probability that an
appearance of the motif starts at a position j in sequence i. So, assuming independence,
the probability that position k in sequence i is not part of the newly discovered motif
is the product of (1 - zij) for all j between k — W and k. So the old value of wij is
updated by multiplying it by the probability that no potential motif which overlaps it is
an example of the newly discovered shared motif.

The Wij are used in reestimating the letter frequencies. Instead of summing the offset
probabilities zij, the weighted offset probabilities wij . zij are summed. To understand
how the weighting scheme effectively erases previously discovered motifs, suppose that
MEME has discovered one motif and is looking for the second. Suppose position j in
sequence i was the start of an appearance of the first motif found. Then the new weights
Wij through Wi ,(j+w-i) will all be less than 1 - zij. Hence they cannot contribute
much to the reestimation of p and are effectively erased. Notice that if a position only
matches the discovered motif poorly, then zij will be low, so the weight for that position
will remain fairly high. The degree to which a position is erased is proportional to the
certainty (zij) that it is part of a previously discovered motif. This makes MEME less
sensitive to chance similarities than if a match threshold were set and all positions with
Zij value above that threshold were completely erased.

3. Experimental results

This section describes experiments using MEME that were conducted on two datasets. In
all cases, the model used by MEME was the n-per model. The first dataset, which will be
referred to as the CRP/LexA dataset, comprises DNA fragments which contain binding
sites for the CRP and LexA regulatory proteins. The CRP/LexA dataset consists of all
of the samples in the CRP dataset plus all the samples in the LexA dataset, which are
described below. The second dataset, which will be referred to as the promoter dataset,
contains samples of prokaryotic promoter regions. It is also described in detail below.
An overview of the contents of the datasets is given in Table 1.

The CRP dataset is taken from Stormo and Hartzell (1989) who, in turn, derived it
from Berg and von Hippel (1988) and de Crombrugghe et al. (Benoit et al., 1984). It
contains 18 DNA fragments from E. coli each believed to contain one or more CRP
binding sites. The dataset contains 18 CRP binding sites which had been verified by
DNase protection experiments when the dataset was compiled. Some of the fragments
contain putative CRP binding sites which have been determined by sequence similarity
to known binding sites only. Each fragment in the dataset contains 105 bases and the
fragments are not aligned with each other in any particular way.

The LexA dataset is taken from Table I in Hertz, et al. (1990). It contains 16 DNA
fragments each believed to contain one or more LexA binding sites. The dataset contains
11 LexA binding sites which had been verified by DNase protection experiments when
the dataset was compiled. An additional 11 putative LexA binding sites, as determined
by sequence similarity to known binding sites, are also present in the dataset. Most of
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the fragments contain 100 bases preceding and 99 bases following the transcription start
position of a gene. Three of the fragments are shorter because 200 bases flanking the
start position of the gene were not available. One of the samples in the LexA dataset
overlaps a sample in the CRP dataset. The overlap includes the known CRP site.

The promoter dataset is taken from Cardon and Stormo (1992). It contains 231 E. coli
DNA fragments each believed to contain promoter regions. This dataset was originally
compiled by Harley and Reynolds (1987), and contained 288 fragments, but Cardon and
Stormo omitted a number of fragments that were from highly redundant sequences or
known to be mutant promoters. All the fragments roughly comprise positions -50 to
+10 with respect to the start of transcription.8 Previous work such as that of Harley
and Reynolds (1987) has shown that the promoter motif seems to consist of two highly
conserved sub-motifs of width 6 each, separated by a variable-length spacer. The spacer
is usually 15, 16, 17 or 18 bases long. Although MEME cannot directly model such a
variable-length motif, it can indirectly by discovering the two highly conserved ends of
such motifs.

Table 1. Overview of the contents of the datasets.

dataset

CRP
LexA
CRP/LexA
promoter

samples

18
16
34

231

average length of samples

105
192
150
58

proven CRP sites

18
1

19
NA

proven LexA sites

0
11
11

NA

3.1. MEME can discover two different binding site motifs

MEME was run for 5 passes on the CRP/LexA dataset with W = 20, NSITES = 17.
The value for W was chosen based on prior knowledge from the literature that this is
the approximate size of both the CRP and LexA binding sites in DNA base-pairs.9 The
value for NSITES was chosen arbitrarily as half the number of sequences in the dataset,
because there are roughly that many footprinted sites of each type in the dataset. As
mentioned previously, the exact value of NSITES is not critical for MEME to discover
the motifs. The first pass of MEME yielded an excellent model for the LexA binding site.
The second pass produced a model for the CRP binding site. Subsequent passes produced
models of unknown significance. The results of MEME on CRP/LexA are summarized
in Table 2.

The model produced by the first pass of MEME on CRP/LexA identified and charac-
terized the LexA binding site extremely well. The quality of the model can be judged
partly from the degree to which it correctly identifies the known LexA binding sites in
the dataset. One way of using the model produced by MEME is to examine the values
of Zij to see which positions in which samples in the dataset are given high probabilities
of being the start of a motif. MEME prints the four highest values of zij for each sample
in the dataset after each pass. Table 3 shows the values of zij after pass 1 of MEME
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Table 2. The models found by each pass of MEME on the CRP/LexA dataset can be visually sum-
marized by the consensus sequence derived from the p matrix by choosing the letter with the highest
probability. The values of information content and log(likelihood) give a qualitative idea of the sta-
tistical significance of the model. Higher values imply the model is more significant. The models
found for LexA and CRP on passes 1 and 2 of MEME have considerably higher log(likelihood) and
information content than the models found on later passes. Note that W = 20 and NSITES = 17.

pass

1
2
3
4
5

starting subsequence

TACTGTATATAAAACCAGTT

TTATTTGCACGGCGTCACAC

ATTATTATGTTGTTTATCAA

TGCGTAAGGAGAAAATACCG

CAAATCTTGACATGCCATTT

final consensus

TACTGTATATATATACAGTA

TTTTTTGATCGGTTTCACAC

TTTATTTTGATGTTTATCAA

TGCGTAAGAAGTTAATACTG

CAAATATGGAAAGGCCATTT

Imodel

13.206
9.087
6.527
7.912
8.027

log(likelihood)

-435.174
-515.837
-539.083
-531.419
-533.662

for the known LexA binding sites. It can be easily seen that the model found in the
first pass characterizes the LexA binding site. Furthermore, all other values of zij were
below 0.17, so the model appears to be very specific for the LexA binding site.

The consensus sequence for the model discovered in pass 1 of MEME on the CRP/LexA
dataset also agrees exceedingly well with the LexA binding site. MEME prints the
consensus (i.e., the most probable letter for each position in the motif as determined
from p) after each pass. The consensus after pass 1 was
TACTGTATATATATACAGTA, which matches the consensus reported by Hertz, et al. (1990)
and is a perfect DNA palindrome.

Another way of seeing how well the model that was learned during pass 1 of MEME
characterizes the LexA binding sites is to plot the information content score of each
subsequence of the input data. Figure 1 shows the information content scores of both the
CRP and LexA samples under the first pass model. (All scores below zero have been set
to zero in the figure to make it easier to interpret.) It can easily be seen that the model
gives the known binding sites high scores while most other subsequences receive low
scores.

On the next pass, MEME discovers the CRP motif. The consensus sequence it reports
for pass 2 is TTTTTTGATCGGTTTCACAC, which agrees well with the consensus found with
one-per model and reported in Lawrence & Reilly (1990). More significantly, the model
characterizes the CRP motif well, judging from the values of zij for the various positions
in the samples in the dataset. Table 4 shows the values of zij found during pass 2 on the
CRP/LexA dataset. According to (Lawrence & Reilly, 1990), the CRP dataset contains
24 known CRP binding sites, 18 of which had been verified by protection experiments.
The value of Zij for eight of these is above 0.99 in the model, while eleven have zij

values above 0.1. It turns out that three of the samples from the LexA dataset also
contain CRP binding sites. The sample labeled colicin El in the LexA dataset is actually
from the same sequence and overlaps the sample labeled cole 1 in the CRP dataset. The
overlap contains the CRP motif. LexA samples colicin Ia and colicin Ib also appear to
contain CRP sites which are virtually identical to the colicin El/cole 1 CRP site. For
these sites zij is over 0.999, which is extremely high. Because of the overrepresentation
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Table 3. Values of zij for the model found by MEME in pass 1 on the CRP/LexA
dataset at the positions of the known LexA sites. Virtually all of the known
sites have very high values of Zij compared to the rest of the positions in the
samples. The table shows the positions of the known sites (site 1, site 2 and
site 3) and the values of Zij of the model at those positions. All other positions
have values of Zij below 0.17. Although the site at position 112 in the colicin
El sequence has Zij value only 0.05, this is one of the four highest zij values
for this sequence. No proven sites are known for himA and uvrC and Zij for
all positions in those samples was very low, less than 0.0001.

sample

cloacin DF13
colicin El
colicin Ia
colicin Ib
recA
recN
sulA
umuDC
uvrA
uvrB
uvrD
colicin A
lexA
mucAB
himA
uvrC

site 1

97a

97
99a

99a

71
71
85a

91
60
71

102
34a

76
49a

zij

0.998684
0.948441
0.998709
0.990472
0.999987
0.999988
0.999990
0.999931
0.987786
0.999972
0.998539
0.683563
0.999982
0.999978

site 2

112

93

48a

55

z i j

0.051543

0.865704

0.314723
0.999933

site 3

111a

zij

0.134281

aIndicates site known only by sequence similarity to known sites.

of this particular "version" of the CRP binding site, the model learned during pass 2
seems to be biased towards representing the version of the CRP binding site present in
the colicin genes. This may explain why the model does not fit all of the CRP sites
equally well.

Figure 2 shows the information content scores of the CRP/LexA dataset computed with
the specificity matrix learned during pass 2 of MEME. Although the model is not as well
defined as that of pass 1, it clearly matches the known CRP sites to a large degree.

3.2. MEME can discover two parts of a single binding site

MEME was run for 5 passes on the promoter dataset with W = 6, NSITES = 231. The
value for W was chosen based on prior knowledge derived from the literature that this is
the approximate size of both the -10 and -35 regions of E. coll promoters. The value of
NSITES was chosen based on the assumption that each sample in the dataset contains
a promoter. The first pass of MEME yielded a model whose consensus was TATAAT,
which is the known -10 region consensus. The second pass produced a model whose
consensus was TTTACA, which is very close to the conventional -35 region consensus,
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Figure 1. The information content score of each subsequence of the CRP/LexA dataset using the specificity
matrix found on pass 1 of MEME. The CRP samples are the short curves at the top, while the LexA samples
are the long curves at the bottom. Vertical scale is such that highest peak is 24.3 bits. All values below zero
have been set to zero.

TTGACA. Further passes produced models of unknown significance. The results of MEME
on the promoter dataset are summarized in Table 5.

The models learned on the first two passes of MEME on the promoter dataset are
applied to the first thirty samples in the dataset and the information content score of
each subsequence in the dataset is plotted in Figures 3 and 4. The base corresponding to
the start of transcription of each sample is at position 50 on the horizontal axis of each
plot. A column of peaks at position 37 in Figure 3 shows that the model identifies the
-10 consensus region of the promoters. A column of peaks at position 15 of Figure 4
confirms that the second model identifies the —35 region of the promoters, even though
its consensus sequence is slightly different from the generally accepted one.

4. Robustness of the MEME algorithm

The CRP/LexA dataset and the promoter dataset were also used to test the usefulness of
the various separate ideas entering into the design of the MEME algorithm, and to evaluate
the sensitivity of the algorithm to the particular values chosen for several parameters.
Overall, the algorithm appears to be gratifyingly robust. Except where noted, MEME was
run using the n-per model.



UNSUPERVISED LEARNING OF MULTIPLE MOTIFS IN BIOPOLYMERS USING EM 65

Table 4. Values of Zij for the model found by MEME in pass 2 on
the CRP/LexA dataset at the positions of the known CRP sites. Of 24
known CRP sites, eight have very high values of zij, and twelve more
(those not stated as below some bound) have values of Zij among the
top four Zij values for the given sequence. The three last three sites
(labeled 6, c, and d) are actually from the LexA dataset, not the CRP
dataset. The sequence named colicin El actually is from the same
gene as cole 1 and overlaps it in the CRP site region. The site in
colicin Ia may not have been reported previously, and the colicin Ib
site was previously reported as being a LexA site.

sample

colel
ecoarabob
ecobglrl
ecocrp
ecocya
ecodeop
ecogale
ecoilvbpr
ecolac
ecomale
ecomalk
ecomalt
ecoompa
ecotnaa
ecouxu 1
pbr-p4
trn9cat
tdc
colicin El
colicin Ia
colicin Ib

site 1

17
17
76
63
50

7a
42
39a

9
14a

29a

41
48
71a
17
53

1
78a

27b

13C

13d

Z i j

< .0004
< .0003

0.028134
0.998985
0.006001
0.999845
0.497545
< .0015

0.996939
0.997871

0.00129
0.014568
0.177722
0.999222
0.998583
0.004511
< .0001

0.506702
0.999186
0.999692
0.999333

site 2

61
55

60

80

61

84

Z i j

0.999185
0.999051

0.018088

0.002302

0.035443

0.000148

aIndicates site known only by sequence similarity to known sites.
bThis LexA dataset sample overlaps CRP sample cole 1.
cThis site may not have been reported previously.
dThis apparent CRP site may have been confused with a LexA site
by Varley and Boulnois (1984) and Hertz et al. (1990).

4.1. Subsequence-derived starting points work well with EM

The idea of running EM for only one iteration from starting points derived from each
possible subsequence of the input dataset was tested. As the following experiments
demonstrate, this method appears to work well at predicting good starting points from
which to run EM to convergence. The experiments consisted of running EM for one
iteration from each possible subsequence-derived starting point on the two datasets. The
likelihood of each of the models thus obtained was plotted against the starting position of
the subsequence from which the starting point was derived. Thus, one point was plotted
for each position in each sample in the dataset. It was hoped that some starting points
would yield models with significantly higher likelihood even after just one iteration.



66 T.L. BAILEY AND C. ELKAN

Figure 2. The information content score of each subsequence of the CRP/LexA dataset using the specificity
matrix found on pass 2 of MEME. The CRP samples are the short curves at the top. The strong match of the
model to three colicin samples in the LexA dataset is seen in the second, third, and fourth long curves. The
vertical scale is such that highest peak is 18.92 bits. All values below zero have been set to zero.

Table 5. The models found on each pass of MEME on the promoter dataset are
summarized as consensus sequences. The —10 and —35 region models were
found on the first two passes of MEME and have much higher log(likelihood)
and information content than the other models found.

pass

1
2
3
4
5

starting subsequence

TAAAAT

TTTTTT

TGAAAA

TATACT

TTGCGC

final consensus

TATAAT

TTTACA

TGAAAA

TATACT

TTGCGC

Imodel

4.627
5.388
4.210
4.191
4.727

log(likelihood)

-1409.458
-1320.208
-1657.897
-1689.300
-1709.490

Then EM could be run to convergence from those starting points and the most likely
model thus obtained could be selected as the output of MEME.

In the first experiment, the combined CRP/LexA dataset was used. The MEME algo-
rithm was run with only one iteration of EM from each possible starting point. When
the log(likelihood) values of the derived models are plotted against the position on the
sequence from which the starting point was derived, it can be seen in Figure 5 that large
peaks in the likelihood function were occurring in most of the LexA samples. (If the
information content scores were plotted, the graph would have a very similar appearance.
Since EM maximizes the likelihood of the model and not its information content, log
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Figure 3. The information content score of each subsequence of the first 30 sequences of the promoter dataset
using the specificity matrix of pass 1 of MEME. The concept learned on pass 1 of MEME on the promoter
dataset locates the —10 region of the promoters. The vertical scale is such that highest peak is 7.21 bits. All
values below zero have been set to zero.

likelihood was chosen as the criterion for choosing starting points. Information content
could also be used, with similar results.)

Further investigation showed that the peaks tended to occur at the positions of the
known LexA binding sites. Figure 6 shows an expanded view of the curve for the
sample from recN. The recN sample contains three LexA binding sites whose left ends
are marked on the horizontal axis of the figure. The peaks in the curve occur at or near
these positions. The same phenomenon was observed for the other LexA samples, except
for himA and uvrC which previous researchers (Hertz, et al., 1990) have noted do not
match the LexA consensus

4.2. "Erasing" one motif is necessary to find another

On closer inspection of the plots, peaks could also be seen in the curves from the CRP
samples at positions corresponding to known CRP binding sites. Figure 7 shows the
expanded view for the CRP sample tnaa. As can be seen in the figure, it is difficult
to distinguish the peaks generated by starting points derived from subsequences at the
CRP binding sites from other peaks which do not correspond to any known sites. It
appears that the other peaks are due to EM starting to converge to a model related to
the LexA motif. Even a bad model of the highly conserved LexA motifs may have
log(likelihood) similar to the best model of the CRP binding sites, due to the fact that



68 T.L. BAILEY AND C. ELKAN

Figure 4. The information content score of each subsequence of the first 30 sequences of the promoter dataset
using the specificity matrix of pass 2 of MEME. The concept learned on pass 2 of MEME on the promoter
dataset locates the —35 region of the promoters. The vertical scale is such that highest peak is 7.74 bits. All
values below zero have been set to zero.

the LexA binding sites are much more highly conserved than the CRP binding sites.
The highest peaks produced by subsequences from the CRP samples were much lower
than the highest peaks produced by the LexA samples. Also, no CRP sample produced
a peak at a position corresponding to a CRP binding site that was clearly higher than all
peaks produced from other subsequences of the CRP samples. This shows the necessity
of somehow eliminating the LexA binding sites from the data in order to be able to
discover the best starting points from which to run EM to learn a model for the CRP
binding sites.

4.3. The expected number of motif appearances is not critical

If the choice of NSITES were critical to the ability of MEME using the n-per model to
find one or more distinct motifs or parts of motifs in a dataset, it would be necessary to
know in advance how many appearances of each motif were in the dataset. This would
restrict the usefulness of MEME in discovering completely new motifs from sequence
data alone. Fortunately, MEME discovers models for motifs with NSITES set to a wide
range of values. So running MEME with just a few values of NSITES will probably
suffice to find most motifs (if any) which are represented in a dataset.

MEME was run on the CRP/LexA dataset with various values of NSITES and all other
parameters fixed. The models found by MEME on each pass were examined to see if they
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Figure 5. \og(likelihood) after one iteration of EM from starting points derived from each possible subsequence
in the CRP/LexA dataset. EM appears to converge quickly from starting points derived from subsequences at
or near the LexA binding sites. The short curves at the top are the CRP samples, while the longer curves are
the LexA samples. The vertical axis for each curve is scaled such that the highest peaks are at -481.6 and the
lowest valleys are at -642.5.
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Figure 6. EM finds models of high likelihood when run for one iteration on the CRP/LexA dataset from
starting points derived from subsequences of sample recN. The starting points correspond well with the known
LexA binding sites, whose left ends are indicated on the horizontal axis.

Figure 7. The \og(likelihood) of the model after 1 iteration of EM in MEME varies strongly with the starting
point. The plot shows the log(likelihood) of the model after one iteration of EM on dataset CRP/LexA run
from the starting points generated from the subsequences in the sample labeled "tnaa".
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fit the known consensus sequences for LexA and CRP. Table 6 shows the passes of MEME
on which models for LexA and CRP motifs were discovered and the information content
and log(likelihood) of the models. MEME always finds a model for the LexA motif on
the first pass. With low NSITES, it finds LexA more than once, due presumably to the
fact the LexA binding sites do not get completely erased. (MEME effectively erases at
most NSITES occurrences of a motif after each pass, so if NSITES = 5 and there are
fifteen LexA binding sites, there are still enough left for pass 2 to find another model of
the LexA motif.) MEME found a model of the CRP motif within four passes for all values
of NSITES tried except for NSITES = 5. Usually, CRP was the second model found.
While the values of information content and log(likelihood) of the LexA models were
always much higher than those of all other models found by MEME, this was not always
true for the CRP models. Only when NSITES was close to the actual number of known
CRP binding sites in the dataset was the information content and log(likelihood) of the
CRP model much higher than for the other models (of unknown biological significance)
found by MEME.

4.4. The n-per model is less sensitive to noise than the one-per model

The removal of the one-motif-appearance-per-sequence assumption was intended, among
other things, to make the n-per model less sensitive to noise than one-per model. For
example, if it is suspected that one or more of the sequences in a dataset is noise (i.e.,
does not contain an appearance of a motif), NSITES can be set to a value which is
less than than the number of sequences in the dataset. If MEME correctly locates just
the appearances of the motif, the model found will have higher log(likelihood) than that
found by using the one-per model which is forced to choose an appearance in every
sequence in the dataset. To test this assumption, MEME was run with both the one-per
model and the n-per model on datasets which contained varying numbers of randomly
generated sequences (with NSITES set to the same, fixed value each time). The random
sequences had the same letter frequencies as the dataset as a whole, and they were the
same length. The datasets used were CRP and LexA with various numbers of random
sequences added. In both cases, MEME with the n-per model learned the correct concept
on the first pass from datasets with more random sequences than the MEME using the
one-per model could tolerate. MEME with the n-per model learned a model for the CRP
binding site with 30 random sequences added to the 18 sequences of the CRP dataset.
(It learned the model even with 50 random sequences, although then it learned it on
the second pass.) MEME with the one-per model was not able to learn a LexA binding
site model with more than 60 random samples added to the dataset, and it learned an
"off-center" model when more than 20 random samples were in the dataset. MEME with
the n-per model, however, learned the correct LexA model even with 80 random samples
added to the dataset.

Figure 8 shows the information content of the CRP and LexA models learned by MEME
with the n-per model and the one-per model on the first pass from datasets with various
numbers of random sequences added. The CRP models learned with the n-per model also
consistently had higher information content than those learned with the one-per model.
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Table 6. MEME finds models of the LexA and CRP binding sites when NSITES has values
between 10 and 35. When NSITES is above 10, LexA and CRP are usually found on the
first two passes. Only with NSITES = 5 did MEME fail to find CRP on any of the first
five passes.

NSITES

5

10

15

20

25

30

35

pass

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

consensus

ATACTGTATATAAAAACAGT

AATACTGTATATGTATCCAG

TGTGAAAGACTGTTTTTTTG

ACTATCATCAAATCTTGACA

GATGCGTAAGCAGTTAATTC

TACTGTATATAAAAACAGTA

TAATACTGTATATGTATCCA

GTGAAAGACTATTTTTTTGA

TTTCTGAACGGTATCACAGC

AAGCAGATTATGCTGTTGAT

TACTGTATATATATACAGTT

TTTTTTGAACGATTTCACAT

TTTATTTTGATGTTTATCAA

TGCGTAAGAAGTTAATACTG

CAAAAATGGAAAGCCATTTT

AATACTGTATATATATACAG

TTTTTGAACGGTTTAAAATT

ATTATTGTGATGTTGATTAT

TGCGGAAGCAGATAATACTG

ATGAAAGTCTACATTTTTGT

TACTGTATATATATACAGTA

TTTATTTTGATGTTTTTCAA

TTTCTGAAAGGTATAACATC

CAAAAATGGAAAAGCAATTT

TGCGTAAGAAGATAATACTG

TACTGTATATATATACAGTA

TTTTTGTGATCTGTATCACA

CAAAAATGGATAACCATTTT

TATGCGTAAGCAGTAAAATT

TGAGGATGATAACGAATATC

TACTGTATATATATACAGTA

ATTATTGTGATGTTGATCAT

CAAAAATGGAAAACCATTTT

TTTCTGACCCAGTTCACATT

ATGCGTAAGCAATTTATTCA

I model

8.151
7.667
6.968
5.406
6.280

11.740
7.318
8.460
8.145
6.895

13.513
9.198
6.620
7.947
7.292

12.883
8.237
7.075
8.042
7.042

12.161
7.797
7.739
7.676
7.253

11.087
7.842
7.529
7.401
6.820

10.300
7.247
7.425
7.717
6.826

log(likelihood)

-154.337
-158.139
-161.024
-169.906
-167.133

-271.797
-319.596
-303.710
-317.833
-318.830

-379.939
-454.496
-475.009
-471.933
-481.090

-520.728
-603.571
-634.142
-627.719
-638.444

-669.214
-760.468
-786.765
-789.667
-803.956

-828.649
-929.059
-952.776
-953.792
-975.923

-995.800
-1092.196
-1112.207
-1104.486
-1135.477

motif

LexA
LexA
7
7
7

LexA
LexA
7
CRP
7

LexA
CRP
9

7
7

LexA
CRP
?
7
7

LexA
7
CRP
7
7

LexA
CRP
7
7
7

LexA
CRP
7

CRP
7
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Figure 8. The information content of the LexA and CRP models found on the first pass of MEME with the
n-per model and the one-per model, run separately on the CRP and LexA datasets with different numbers
of random examples added. The comparative advantage of the n-per model is clear. Especially with motifs
whose occurrences are highly conserved, the n-per model finds very good models even when many sequences
not containing the motif are present. MEME was run with W = 20 and NPASSES = 1. NSITES was
set to 15 for the n-per model.

This was true even for the model learned with no random sequences added to the dataset.
Presumably, this is indicative of the fact that the n-per model is taking advantage of the
sequences with multiple appearances of the CRP site. The models learned with the n-per
model for LexA were extremely robust to the number of random samples added to the
dataset. There was almost no decrease in the information content no matter how many
random samples were present. The one-per model, on the other hand, found models with
lower information content when more random samples were in the dataset.

It is clear from Figure 8 that MEME using the n-per model will find a set of highly
conserved binding sites even in datasets where the vast majority of the sequences do not
contain it. The one-per model suffers from the fact that it must always average in one
supposed motif appearance from each sample. MEME with the n-per model is thus able
to deal with a particular type of noise—samples containing no motif appearances—if a
good estimate of the true number of motif appearances (NSITES) is available.
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5. Discussion

The MEME algorithm demonstrates the power of several new ideas. Subsequence-derived
starting points have been shown to be a powerful way of selecting starting points for
EM, and may be useful with other methods as well. Since EM tends to converge quickly
from good starting points, MEME saves a great deal of time by only running EM for one
iteration from each starting point and greedily selecting the best starting point based on
the likelihood of the learned model. The modifications to the EM algorithm which allow
MEME to drop the assumption that each sequence contains exactly one appearance of a
motif and fit the n-per model to a dataset have been shown to give MEME the ability
to discover motifs in datasets which contain many sequences which do not contain the
motif. Finally, the probabilistic weighting scheme used by MEME to erase appearances
of the motif found after each pass was demonstrated to work well at finding multiple
different motifs as well as motifs with multiple parts.

The MEME algorithm should prove useful in analyzing biological sequence data. It
is a robust tool for discovering new motifs from sequence data alone when little or no
prior knowledge is available. When MEME is used to discover motifs from sequence
data alone, it is performing unsupervised learning. Effectively, MEME finds clusters
of similar subsequences in a set of sequences. Some measure of the unlikeliness of a
cluster, information content of the model for example, can then be used to decide if other
methods (i.e., wetlab experimentation) should be applied to verify that the sites which
match the model actually are biologically related. Plots of information content scores of
various positions of the sequences in the dataset such as in Figure 1 and Figure 2 can
also be helpful to a biologist for discovering which clusters are significant and which
may be statistical artifacts.

When MEME is used with a dataset of sequences each of which is known to contain
a motif, such as the promoter dataset, it is performing supervised learning. Because the
models MEME learns do not allow a motif to have variable length (i.e., no insertions or
deletions are allowed), MEME is limited to learning a restricted class of motifs. It may
be possible to use the multiple models learned by MEME on passes through the dataset as
features for another learning algorithm. For example, a decision tree learner such as ID3
(Quinlan, 1986) or CART (Breiman et al, 1984) could use the models learned by MEME
on the promoter dataset as features to learn a classification rule for E. coli promoters.
Since the first two passes of MEME found models for the -10 and -35 regions of the
promoter, this approach should have a high chance of success. Another promising idea is
to use the short motifs learned by MEME to construct starting points for hidden Markov
models.

The innovations added to the EM algorithm in MEME can also be used with hidden
Markov models (HMMs) (Haussler, et al., 1993). The idea of using subsequence-derived
starting points may be adaptable for use with HMMs. The method used by MEME for
probabilistically erasing sites after each pass would certainly be easy to add to the standard
forward/backward HMM learning algorithm. It should also be possible to design a HMM
which, like the n-per model, eliminates the assumption of one motif per sequence. It may
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also be possible to adapt MEME innovations to learning stochastic context free grammars
for biopolymer concepts (Sakakibara, et al., 1993).

MEME discovered CRP sites in the colicin Ia and colicin Ib samples. The site in colicin
Ib was mentioned in Varley and Boulnois (1984) as being either a LexA site or possibly
a CRP site. Hertz, et al. (1990) appear to have classified it as a LexA site. The results
reported here indicate that the site is probably a CRP binding site, not a LexA binding
site: the information content score for the site under the CRP model was around 16,
whereas it was less than 1 under the LexA model. No mention of the CRP site found in
colicin Ia was found in the literature.
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Appendix

Reestimating p and z for the one-per and n-per models.

During each iteration of EM, the values of the letter probabilities of the motif model p,
and of the offset probabilities z, must be reestimated. With the one-per model, the z
values are reestimated using Bayes' rule from the current estimate of p. For both models,
given the values of z, p is estimated as the expected values of the letter frequencies.
How this is done is described below.

To describe the EM algorithm for the two model types formally, the following defini-
tions are useful. Let N be the number of sequences, W be the length of the motif, and
L be the length of each sequence (assume all are of the same length). Define z£- as the
estimate after q iterations of EM of the probability that the site begins at position j in
sequence i given the model and the data. Let pfi.' be the estimate after q iterations of
EM of the probability of letter l appearing in position k of the motif. Let Si be the ith
sequence in the dataset and sij be the letter appearing in position j of that sequence.
Define an indicator variable Yij that equals 1 if the site starts at position j in sequence
i, and 0 otherwise.

We ignore the probability of the letters outside of the motif, and only consider the
probability of the letters in the motif. For both model types, EM must calculate the
probability of sequence Si given the motif start and the model. This can be written as
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where the sequence Si has letter lk at position j + k - 1, i.e., Si,j+k-1 = l k .This forms
the basis for calculating z^.

With the one-per model, Bayes' rule is used to estimate z(q) from P(Si|Yij = 1 , p ( q ) ) .
Bayes' rule states that

where P°(Y i j = 1) is the prior probability that the motif begins at position j in sequence
i. P° is not estimated and is assumed to be uniform,

so the above simplifies to

The probability is only estimated for sites which are completely within a sequence, so j
is assumed to be within the range 1 , . . . , L — W + 1 in all calculations of z(q).

Notice that the above formula for z(q) ensures that it sums to 1.0 for each sequence.
This enforces the implicit assumption of the one-per model that each sequence contains
exactly one appearance of the shared motif. For the n-per model, our modified EM
algorithm normalizes z (q) so that the sum over all positions in all sequences is NSITES.
This can be written formally as

Once z has been calculated as above for the n-per model, it undergoes two normaliza-
tions to enforce the constraints that each z^' is less than or equal to 1.0, and that the sum

of the z\j in any window of length W is less than or equal to 1.0. These constraints
can be written formally as

There are many'different ways in which the constraints could be enforced. A particular
manner was chosen which reduces computational effort. No claim is made that this is
the only or best choice. The two constraints are enforced separately by applying the
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following two algorithms in order. Figure A.1 presents the first algorithm, which makes
one or more passes through the offset probabilities normalizing them to sum to NSITES
and "squashing" (setting to 1.0) any that would exceed 1.0 after normalization. After each
pass, if any offset probabilities get squashed, another pass is made to raise the value of
offset probabilities that have never been squashed so that the NSITES total is enforced.
In practice, usually few passes are needed. The second algorithm, given in Figure A.2, is
run next to enforce the constraint that no window of W positions has offset probabilities
that sum to more than 1.0. This is achieved by dividing each sequence into adjacent
windows of length W and normalizing within each window separately. Windows are
then shifted one to the right and the process is repeated. This is done for all W possible
shifts of the windows, which guarantees that no window of width W will have offset
probabilities summing to greater than 1.0, but may reduce the total sum below NSITES.
The squashing algorithm could be repeated to correct this but this is not done in the
interest of saving computation time.

Notes

1. The name MEME has several explanations. First, it is an acronym for multiple EM for motif elicitation.
Second, as an English word "meme" means a theme or motif whose propagation through culturaTevolution
is similar to the propagation of a gene in biological evolution. Third, MEME is a greedy algorithm—a
"me! me!" algorithm.

2. A related measure used occasionally in this paper, Imodel is the information content of the model
(Stormo, 1988). It is the sum of the information content of each position in the motif, Ij, over all the
positions in the motif. The information content of a position in the motif is defined as

where ul is the overall frequency of letter / in the dataset. The information content of the model is thus
defined as

The relationship between Imodel and log(likelihood) is discussed by Stormo (1990) and Bailey (1993).
3. Promoter sequences are DNA sequences that precede genes and are necessary for the transcription of DNA

to messenger RNA.
4. The consensus sequence of a motif is the sequence consisting of the most commonly occurring letter in

each position of the appearances of the motif. Ties are resolved arbitrarily.

5. See Stormo (1988) for a discussion of matrix-based scoring of sequences.

6. Using all possible subsequences of the first dataset sequence is suggested in Stormo and Hartzell (1989).
The MEME approach of using all subsequences of all sequences is preferable since it makes the order in
which sequences are given unimportant. Not using just the first sample also eliminates the problem of the
first sample happening to contain no motif occurrence.

7. The idea of a "conserved motif comes from the biological idea that the occurrences of motifs are often
related to each other by evolution. A well conserved motif is one whose appearances are all almost identical
to each other because little mutation has occurred in them since they separated from each other or from a
common ancestor.
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1. SQUASH ( z (unnormalized; z^ = P(Si\Yij = 1, p ( p ) ) ) ,

2. total (the total of z(q) for all sequences and positions),
3. NSITES (the number of appearances of the motif expected),
4. L (length of the sequences),
5. N (number of sequences)) {
6. renormalize = true
7. while (renormalize) {
8. renormalize = false
9. normalize = total/NSITES

10. total = 0
11. fori = 1 t o N {
12. for j = 1 to L - W + 1 {
13. p = Zij

1 4 . i f ( p < 1 ) {
15. p = p/normalize

16. | f ( p> l ){
17. p = 1
18. NSITES = NSITES - 1
19. renormalize = true
20. }
21. }
22.                                     zij = p
23. i f ( p < 1 ) total = total + p
24. }
25. }
26. }
27. return
28. }

Figure A.1. SQUASH: Normalize the Zij to sum to NSITES while constraining each to be between 0 and 1.
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1. SMOOTH ( z(q) (normalized offset probabilities),
2. L (length of the sequences),
3. N (number of sequences) ) {
4. for i = 1 to N {
5. for offset = 1 to W {
6. for j = offset to L - 2 * W by W {
7. localp = 0
8. for k = 1to W {

9. localp = localp + z^+k

10. }
11. if (localp > I) {
12. for k = 1 to W {

13. 4'ife = *$+k/localp
14. }
15. }
16. }
17. }

18. }

19. return
20. }

Figure A.2. SMOOTH: Constrain the sum of offset probabilities in any window of width W to sum to no more
than 1.0.
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8. Biologists often number the "bases" (i.e., letters) in a DNA sequence with base 1 being the base where
transcription from DNA to messenger RNA begins. Bases preceding the start of transcription are given
negative numbers, starting at -1, with 0 not used.)

9. If the best value of W is not known in advance, MEME can be run repeatedly with different values.
Lawrence and Reilly (1990) addresses the question of choosing the best value of W. Each run of MEME
uses a single value of W for all motifs found.
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