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Abstract. Mosaic images provide an efficient representation of image
sequences and simplify scene exploration and analysis. However, the ap-
plication of conventional methods to generate mosaics of scenes with
moving objects causes integration errors and a loss of dynamic infor-
mation. In this paper a method to compute mosaics of dynamic scenes
is presented addressing the above mentioned problems. Mowing pizels
are detected in the images and not integrated in the mosaic yielding a
consistent representation of the static scene background. Furthermore,
dynamic object information is extracted by tracking moving regions. To
account for unavoidable variances in region segmentation topologically
neighboring regions are grouped into sets before tracking. The regions’
and objects’ motion characteristics are described by trajectories. Along
with the background mosaic they provide a complete representation of
the underlying scene which is idealy suited for further analysis.

1 Introduction

An important topic in computer based scene exploration is the analysis of image
sequences, since motion within the scene cannot be extracted using single im-
ages only. However, the resulting amount of data to be processed usually limits
the application area of image sequences. One possibility to reduce the amount
of data is to create mosaic images. In doing so a sequence is integrated in one
single mosaic image thus removing redundancies within the sequence. Apply-
ing conventional methods to generate mosaics to sequences with moving objects
yields integration errors and a loss of dynamic information (see e.g. [1]). In the
works of Mégret [6] and Davis [3] moving areas within a sequence are therefore
detected and omitted for integration. Thus integration errors can be avoided but
dynamic information still is lost. Cohen [2] suggests tracking of moving regions
based on dynamic templates, however, if the shapes of objects change signifi-
cantly templates are not sufficient. In Irani [4] tracking is realized by temporal
integration, but no explicit data extraction is suggested.
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The method presented in this paper is based on a two-step strategy for each
image to process resulting in a mosaic of the static scene background and tra-
jectories describing the object motion. In the first step pixels belonging to pro-
jections of moving objects, in the following referred to as moving pixzels, are
detected resulting in a motion map and omitted during subsequent integration
of greylevel information to generate the background mosaic. In the second step
regions, referred to as moving regions, are first extracted from the motion maps.
They are subsequently grouped into connected components and matched against
the components of the previous image. Thus temporal correspondences can be
established and trajectories are derived.

The paper is organized as follows. In section 2 a brief introduction to image
alignment and detection of moving pixels is given. Section 3 outlines the tem-
poral correspondence analysis based on moving regions by which dynamic scene
information is extracted. Results of applying the algorithms to various image
sequences are presented in section 4, and finally a conclusion is given.

2 Motion Detection

To detect moving objects in an image sequence many methods have been pro-
posed in the literature. Most algorithms rely on the analysis of pixel based inten-
sity differences between the images after an alignment step in case of a non-static
camera. In our approach the images are aligned using perspective flow developed
by [5] and implemented in [8], where the current background mosaic serves as
reference. The alignment is based on an underlying motion model describing
the global motion between both images induced by the active camera. We chose
a projective transformation, which yields correct global transformation e.g. for
camera rotation around the optical centers (no translation) and arbitrary static
scenes, while projections of moving objects result in violations of this model.
These errors are subsequently detected either computing the average intensity
difference or the mean magnitude of the local normal flow n(z,y) for each pixel
(z,y) within a neighborhood u, as illustrated in equation 1 for the mean normal
flow N(z,y). Taking neighboring pixels into account yields more robust classifi-
cation results as the influence of image noise is reduced.

1
N(z,y)=- > ln@,y)l (1)
I (z',y')Ep

The classification of moving pixels itself is acomplished thresholding the resulting
pixelwise motion measure. Thus detection of motion is achieved except for image
regions where motion does not cause any changes in intensity. However, the
resulting motion maps are often fragmented and are therefore smoothed applying
a dilatation operator of size 7 x 7 to the thresholded motion maps. Hence moving
areas become more compact and small gaps in between are closed.



The resulting motion information is used to integrate the current image into
the mosaic where only static pixels are taken into account yielding a consistent
representation of the static scene background. Further temporal correspondence
analysis is based on this data as presented in the next section.

3 Temporal Correspondence Analysis

The resulting motion information is sufficient to generate mosaics of the static
scene background. As a next step we aim at explicitly representing the dynamic
information of the image sequence contained in the already calculated motion
maps. Therefore in our approach moving regions resulting from region labelling
the thresholded and dilated motion maps are tracked and trajectories describing
their motions are generated to represent the dynamic information.

3.1 Tracking of Moving Regions

Tracking is based on moving regions. The matching criterion for tracking will
now be developed for these regions, but subsequently applied for sets of regions
(section 3.2).

Each moving region needs to be characterized by several features which allow
us to match corresponding regions of consecutive images. When selecting appro-
priate features it has to be taken into account that due to variances within the
segmentation process and because of scene events like object decompositions or
collisions, the moving regions’ shape and size may vary significantly even for con-
secutive images. Furthermore regions often do not show homogeneous intensity
values since generally moving regions contain projections from different objects
or surfaces. Of course, also regions resulting from one object may be of inho-
mogenous gray values. Due to these limitations features need to be chosen which
are mainly invariant against scaling and changes in shape and which preserve an
adequate description of the regions’ pixel values. This is true for the histogram
of the pixel values and the centroid. Based on these features robust detection of
correspondences between regions of consecutive images is possible: Two regions
are considered as corresponding if the distance between their centroids is smaller
than a given threshold 84, usually set to 60 pixel, and if the distributions of their
intensity values are similar. This is checked by computing the overlapping area
F of the two normalized histograms, whereas the minima of the entries a; or b;
in all cells 7 are summed up:

F= Zmiﬂ(ai, bi) (2)

The resulting intersection area F' is required to exceed a given percentage 6,
for establishing a match. 8, is usually chosen between 0.75 and 0.85. For robust
region tracking the sizes A and B of both regions given by the number of pixels
are compared in addition. However, only if large differences between A and B
occure a match is rejected due to the region expansion induced by the dilatation



operator which has to be taken into account explicitly. The difference in size
between to areas is regarded too large if the following condition holds:

A-B

3.2 Tracking Components

Matching all pairs of moving regions from two consecutive images is not very
efficient due to the combinatorics. Additionally regions frequently decompose
or merge in the course of the image sequence induced by variances of the seg-
mentation results (see e.g. motion maps in fig. 2) or events within the scene. In
such cases correspondences cannot be established due to significant differences
in the regions’ histograms or size or too large distances between their centroids.
Therefore we propose to track connected components instead, which are referred
to as components subsequently, similarly as in [7] for color segmentation. In [7],
regions are considered as neighboring, if they are spatially adjacent and simi-
lar with respect to their color features. In our case regions are assumed to be
neighboring, if their minimum point distance is smaller than a given threshold.
As mentioned, matching of connected components is based on the same criteria
as developed to match moving regions (section 3.1) where the features can be
derived directly from the features of the underlying regions. Searching for corre-
spondences between these components reduces complexity, and variances within
the segmentation can be handled since it is not required that components contain
the same number of regions. Rather each component is treated as a single region.
Using this strategy objects or parts of objects can be tracked robustly in most
cases. However, in some cases correspondences cannot be established due to a
changing arrangement of the regions within the components during the tracking
process. To cope with these situations for each unmatched component all subsets
of constituting moving regions are considered in a final step. Between all subsets
of all components from consecutive images the best match is searched iteratively
where the same match criteria as for components are applied. Matched subsets
are removed from the sets and search continues until no more matches can be
established or all given subsets have been matched.

3.3 Trajectories

As a result of tracking, correspondences between components of consecutive im-
ages have been established. To extract the dynamic information, in the present
context given by the motion direction, trajectories for all tracked components
are generated. The position of each component in an image is given by its cen-
troid. A concatenation of the centroids of matched components, and matched
subcomponents as well, yields a trajectory describing the objects’ motions within
the image sequence. In the case of translational motion this is sufficient to char-
acterize the object motion. Future work will focus on a more detailed analysis
of the trajectories, which may serve as a starting point to apply more sophis-
ticated motion models. Furthermore they can be used to detect discontinuities



of object motion and components incorrectly classified as moving in the later
case. Trajectory points of these components show little variance which should
make it possible to distinguish them from moving ones (see figure 4). Finally,
based on the trajectories a reconstruction of homogenous objects which cannot
be detected as a whole is possible. Different moving components belonging to
one object show similar trajectories and could be grouped to reconstruct the
object.

4 Results

The proposed algorithms for detection and tracking of moving objects have been
tested on various image sequences. All sequences were aquired using an active
camera which scanned the scene by pan and/or tilt movements. For the first three
examples presented in this article the mosaics of the static scene background are
shown along with the reconstructed trajectories. On the left side of each figure
several images of the underlying sequence are depicted while in the lower half
motion maps for different points of time within the sequence are shown. The last
example illustrates the possibilities for false alarm detection and elimination of
initial object positions (see below) based on trajectory analysis.
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Fig. 1. Results of tracking a person: although the shape of the regions changes (maps
below the mosaic) the motion trajectory (black line) can be reconstructed correctly

In figure 1 the person’s motion is reconstructed correctly (using intensity dif-
ference for detection) despite the fact that the shape of the detected regions and
their sizes vary significantly over time (as can be seen in the motion maps). The
position of the person can be reconstructed almost completely and no parts of it
are integrated so that a consistent representation of the static scene background
results. However, it needs to be mentioned that the initial position of the person
remains in the mosaic. It is integrated at the beginning of the sequence because



it initially belongs to the static background. After the person has left his initial
position, the beforehand occluded background becomes visible and results in
large intensity differences at this image region, which consequently is detected
as a "moving” region. Therefore at this position new intensity information can
never be integrated. However, the centroid of this virtually moving region is
nearly constant and the analysis of trajectory data is a promising starting point
to correct this error in the future.

The second example (fig. 2) shows a mosaic image of a scene containing
several pens. A pencil enters the scene from the top left corner and stops moving
after hitting one of the other pens in the scene. Its trajectory (reconstructed
using normal flow detection) is drawn black whereas the white arrow indicates
the real motion direction. Especially at the beginning of the tracking process
the motion given by the trajectory differs significantly from the true one. This
originates from the fact that initially only parts of the pencil are visible. As new
parts become visible a displacement of the centroid results and the reconstructed
translation direction is distorted accordingly. As soon as the pencil is completely
visible this divergences disappear and the centroids’ displacements are caused
by real object motions only, allowing a correct reconstruction of direction.
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Fig. 2. Mosaic and reconstructed trajectory (black) of an object within a desk scenario.
The motion maps show great variances (centroids of moving regions marked grey).

Figure 3 illustrates the mosaic and extracted trajectories of another desk sce-
nario. The match box in the upper half of the four images on the left is opened
and its two parts are moving in opposite directions afterwards. As in the first
example, the initial box position remains part of the static mosaic whereas the
following positions are omitted within the integration process. However, the ob-
ject parts cannot be detected completely computing the intensity difference due
to lack of contrast between the image background and the object parts. Espe-
cially the box top moving to the left causes integration errors due to incomplete
object detection. Still the reconstructed trajectories describe the object motion



almost correctly. Even the decomposition of the box (which forces the moving
regions to be split up multiple times, see motion maps in figure 3) is identi-
fied correctly. Due to the fact that the regions resulting from the decomposition
are grouped into one component they can be matched to the single region of the
previous image. With increasing distance, however, they are eventually arranged
into different components (points of time indicated by white circles within the
figure). This causes a significant change within their centroids’ positions (white
arrows). However, the existing correspondences can be detected correctly and
the scene events represented exactly.
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Fig. 3. Detection and tracking of an object decomposing in two parts

Concluding, the last example in figure 4 illustrates the former mentioned
possibilities to detect false classified regions by trajectory analysis. The images
of the sequence and the related mosaic depict several objects of the construction
scenario of the SFB 360 where the dark ring in the center of the images moves
to the right. Its initial position remains part of the mosaic. However, the plot of
trajectory points at the bottom shows, that variance within these points is quite
small and should be sufficient to identify this region as false classified. Hence the
mosaic image can be corrected lateron by integrating local information from the
current image although the region had been classified as moving beforehand.

5 Conclusion

In this paper an approach to generate mosaics of image sequences containing
moving objects has been presented. A mosaic of the static scene background
is generated and in parallel trajectories representing the dynamic information
are extracted. To this end moving regions within the sequence are segmented
based on pixelwise normal flow or intensity difference between two images. Sub-
sequently the regions are grouped into sets of topologically neighboring regions
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Fig. 4. The static initial position of the moving ring remains part of the mosaic. How-
ever, analysing the trajectory points indicates low variance suitable for identification.

tracking is based on. In this manner variances within the segmentation process
and object decompositions can be handled. The components and if necessary
subsets of them are robustly tracked over time by comparing their intensity
histograms and centroid positions. Future work will focus on removing initial
object positions from the mosaics and on detecting false alarms. As pointed out
trajectory data as computed yield an ideal starting point to solve these problems.
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