Analysis of object interactions in dynamic scenes
Birgit Moller! and Stefan Posch?

! Technical Faculty, Applied Computer Science, University of Bielefeld
2 Institute of Computer Science, University of Halle
Von-Seckendorff-Platz 1, 06099 Halle/Saale
posch@informatik.uni-halle.de

Abstract. One important source of information in scene understanding
is given by actions performed either by human actors or robots. In this
paper an approach to recognition and low-level interpretation of actions
is presented. Since actions are characterized by specific motion patterns
of moving objects, recognition is done by detecting such motion patterns
as specific constellations of interactions between moving objects. First
of all, motion detection and tracking algorithms are applied to extract
correspondences between moving objects in consecutive images of a se-
quence. Subsequently these are represented with a graph data-structure
for further analysis. To detect interactions of moving objects robustly a
short history of motion of objects is traced using a finite-state automaton.
Finally activities are segmented based on detected interactions. Since ro-
bust motion data are required consistency checks and corrections of the
acquired motion data are performed in parallel.

1 Introduction

The analysis of dynamic scenes is of growing interest in todays computer vision
research. Especially interacting systems often rely on the analysis and interpre-
tation of motions and actions taking place in their work space. Since this analysis
is based on image sequences, a large amount of data has to be analyzed to extract
relevant information. To simplify this task one might, on the one hand, reduce
the data representing image sequences by one single mosaic image [5, 8]. On the
other hand, one can focus on preselected, potentially interesting parts of the
scene. Often such parts are characterized by actions in the scene projected into
the image. In this paper we present an approach to detect events and activities
in order to determine such regions of interest.

In the literature events or actions are often defined by physical data of monitored
objects such as velocities and motion directions [3] or spatial relations [4]. Mann
et al [7] suggest to use dynamic and kinematic models to understand objects’
behaviors and interactions. Since the computation of physical features requires
highly accurate segmentation data, we in contrast define events as changes in
the motion characteristics of moving objects originating from object interac-
tions, e.g. merging, splitting, and start or end of motion. Activities are defined
as specific constellations of such events. Similar to [1], we assume that these
activities, and thus as well underlying actions, can be detected to a large degree
based on interactions of moving objects and without exploitation of high level
or scene knowledge [3]. Our analysis is therefore focused on blob constellations

* This work has been supported by the German Research Foundation (DFG) within SFB 360.

In L. van Gool, editor, Pattern Recognition, Proc. of 24th DAGM Symposium, Zurich, Switzerland,
LNCS 2449, pages 361-369. Springer, September 2002.
O Springer-Verlag Heidelberg. Permission to reprint/republish this material for advertising or promotional purposes or for creating

new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works,
must be obtained from Springer-Verlag Heidelberg.

and interactions (e.g. in contrast to [1], where blob shapes or orientations are
explored), solely based on motion detection and tracking results presented in [8].
Actions are usually characterized by varying temporal scales. To achieve a ro-
bust and flexible recognition, this temporal variance has to be considered. Often
this is done using HMM- or parser-based approaches [10,6]. Since the usage of
HMMs usually requires large amounts of training data, we use a training-free
graph-based approach, similar to the one in [2]. All detected temporal correspon-
dences between moving objects are represented within a graph data-structure.
Interactions and activities can then be defined and recognized as specific sub-
graph constellations. To achieve robust recognition, additionally a finite-state
automaton is used to process a short history of detected moving objects and
thus verify recognized interactions. According to the states and transitions of
the automaton, events are hypothesized, consistency checks on the motion data
performed and further analysis steps invoked.

In the following section the basics of motion detection and tracking are outlined
as well as the graph data-structure used. The graph-based annotation and cor-
rection of motion data using a finite-state automaton is described in section 3,
subsequent activity detection in section 4. Results are presented in section 5 and
we conclude with some final remarks.

2 Motion data extraction and representation

To detect moving objects® within a scene and to track them over time the two-
step strategy outlined in [8] is used, which is briefly summarized in the following
paragraph. Subsequently the graph data-structure is described in detail.

In a first step intensity residuals between the current image and a reference
image?* are calculated. Since often only small displacements occur between two
consecutive images there is the tendency to detect only parts of the moving ob-
ject, especially in case of objects with homogeneous surfaces. Therefore we use a
continuously updated representation of the static scene background as reference
image for motion detection. This background representation is generated by in-
tegrating static parts of all sequence data into one single (mosaic) image. Given
these motion data, subsequent binarization and region segmentation yields mov-
ing regions, which are grouped into connected components with regard to spatial
neighborhood. These connected components are tracked over time using their in-
tensity histograms as well as the distance of their centroids and difference of size
as matching criteria. Tracking connected components instead of single regions in
isolation yields more robust tracking data despite variance in segmentation. To
handle also cases where connected components could not be matched as a whole,
all subsets of their constituting regions are calculated and matched against each
other. Thus splitting and merging of connected components can easily be de-
tected and serves as a basis for recognition of object interactions.

Resulting temporal correspondences between moving connected components are

3 Using 2D image sequences, only projections of moving objects can be detected and tracked, obvi-
ously. However, for simplification we use the terms objects and their projections synonymously.

For active cameras images are first aligned using projective transformations, see [8].

represented using a graph data-structure, in the following referred to as corre-
spondence graph. For every frame and each connected component a node of this
graph is created while matches are represented by edges in between. Matches of
region subsets are represented by inserting and connecting the connected com-
ponents the subsets belong to. The associated match information is stored using
a list of the corresponding edge. In this way, we not just link connected compo-
nents in case they match as a whole, but also if matched only partially. Hence
it is possible to detect events like splitting and merging as graph nodes with
multiple incoming or outgoing edges.

3 Graph-based data annotation and correction

Based on our assumption that interesting parts of a scene (i.e. parts where ac-
tions are expected to occur) can be detected analyzing motion-based activities,
we propose a two-step strategy to locate such activities.

In the first step of our approach we detect interactions (events) between moving
connected components or region subsets based on the above mentioned cor-
respondence graph. Since matches of connected components as well as region
subsets are represented by the graph representation we will in the following re-
fer to both as components. Each sequence of linearly linked nodes in the graph
where all nodes have in-degree and out-degree equal to one, except the first with
in-degree and the last with out-degree larger one, represents a period of continu-
ous® motion of a component. Thus to detect events it is sufficient to analyze the
first and last node of such a sequence with respect to the number of incoming
and outgoing edges. However, due to inaccurate tracking data or variance in
segmentation, events like splitting or merging might occur even if no real object
interaction takes place. To cope with such situations a short history of motion
of components is used as temporal context which is analyzed using a finite-state
automaton. This automaton currently consists of ten states and an alphabet of
five possible input symbols, listed in the tables below. The transition diagram is
shown in figure 1.

State Description

Sstart start of motion

Stracked simple tracked, T' < fr Symbol |Edge Constellation |Line Code
Stracked_st |simple tracked, T' > fr tmatch 1in - 1 out solid
Stracked_am |tracked after merge teplit 1 in - multi out dashed
Stracked_as |tracked after split tmerge multi in - 1 out dotted
Smerged |Mmerge tmergesptit® |multi in - multi out

Ssplit split tstop not matched

Sfalse detected, but not in motion

Sstopped not detected

Each state of the automaton codes either a certain event (gray boxes) or a spe-
cific phase of continuous motion (white boxes). If a state coding an event is
reached, the corresponding event is hypothesized for further analysis in the ac-
tivity detection step. In case a state coding a specific phase of motion is reached

5 In this context we do not consider continuity as continuous velocity or acceleration but periods
of motion without any interaction.

6 This constellation is currently only recognized but not explicitly handled.

simple correspondence - — — . gplitof components ~ eeeeeee- merge of components

Fig.l. The finite-state automaton for tracing the short history of motion of objects.
For clearness reasons some self-transitions and the state sstoppeqd have been omitted.

special procedures are invoked to perform e.g. consistency checks or to detect
components incorrectly classified as moving. The input alphabet of the automa-
ton is defined based on possible constellations of incoming and outgoing edges
of graph nodes (see table above). When analyzing an image sequence, the corre-
spondence graph is annotated based on the automaton. In this way each graph
node, respectively the corresponding component, is associated with one state of
the automaton. Edges between graph nodes are labeled with symbols of the in-
put alphabet where the edge constellation of the source node is evaluated. This
analysis of the correspondence graph is now discussed in some detail.

With each frame processed the correspondence graph is updated by inserting the
detected matches. Nodes associated with components detected for the first time
are labeled with the state sgq-:- However, if a component at a nearby position
has been detected a few frames previously, an undetected correspondence is as-
sumed. Hence the graph is corrected accordingly by inserting an additional edge.
Each newly detected component is subsequently associated with the state syrqcked
for a total of 6 (typically five to eight) frames. If it is further tracked, state
Stracked_st 1S entered. In this state the component is assumed to have been stably
tracked and additional analysis steps are invoked. As an example, the variance
o of its centroid positions during the last frames yields the possibility to identify
incorrectly classified moving regions, which have ceased moving and thus show
little variance (o < 6,). If such an incorrectly classified component is detected,
the state sfq;s¢ is assigned and it is removed from the set of moving components.
Furthermore this observation provides the opportunity for top-down verification
and update of the background representation, since these classification errors are
due to an inconsistency between the static mosaic image and the current state
of the scene: If e.g. an initially static objects starts to move, intensity residuals
result at its former position and a seemingly moving region is detected. How-
ever, integrating data of the current image to this area the representation can
be corrected.

If an interaction is detected during continuous tracking the state of the involved
components switches to $perged OF Sspiit- Thus, merge or split events are hypoth-
esized, however not accepted straight away. Rather checks for spurious splitting

and merging due to segmentation errors are performed first. To this end for sub-
sequent frames the components originating from a split or merge enter the state
Stracked_as (‘tracked after split’) or S¢racked_am (‘tracked after merge’). Only if no
further events occur until they are stably tracked again the hypothesized event
is accepted and the state Sgrqckeq i assigned. If further events are recognized
the previously hypothesized event is assumed to be incorrect, probably due to
very large variance in segmentation. Therefore these events are rejected and the
graph representation is corrected accordingly: In case of a spurious split we di-
rectly link the two nodes where the split respectively the merge event had been
detected. The subgraph in between is not considered any longer. However, in the
future one could merge components of this subgraph which share the same time
stamp and thus interpolate the trajectory of the moving object. Similarly spuri-
ous merges of components can be amended. As outlined above, the annotation
and analysis of the correspondence graph is performed simultaneously to motion
detection and tracking. Thus consistency checks and if necessary corrections are
continuously performed on the acquired motion data.

4 Activity detection

In the construction scenario of the SFB 360 [9] under consideration a human
and a robot in cooperation are supposed to perform an assembly task. Activities
are given by more or less complex steps of such tasks, e.g. to add objects to the
scene, to remove objects, to move objects from one position to another and to
manipulate, assemble or disassemble them. According to our basic assumption
that each single activity can be coded as a constellation of previously defined
interaction events, the final step in our approach consists of evaluating the for-
merly generated event constellations as described below.

In the following diagram two activity definitions are shown. Since adding objects
to the scene and removing them share the same event constellation, they share
the same definition as well and therefore can only be distinguished analyzing the
image data directly.

Add / Remove

START —* SPLIT —> FALSE

Object-Displacement

START > SPLIT > FALSE
SPLIT > FALSE

Obviously, to recognize such an activity, the start of a motion has to be de-
tected first. In case of a 'Remove’-activity, which is explained in detail now, an
actor, e.g. the arm of a human, starts moving, grasps an object and leaves the
workspace (see figure 3). During monitoring this activity, initially only one single
moving region is detected since the object to be removed is still part of the static
scene background. When contact has been established between actor and object
this moving region grows since actor and object are now moving simultaneously.
With growing distance between the moving actor and the former object position,

¢

2 components
detected

re-merge

"

Fig. 2. Robust tracking: Due to a leak of contrast the moving hand is only partially detectable,
but graph correction enables tracking of the hand as one object.

the moving component splits up: One resulting component corresponds to the
moving actor including the object, the second one results from intensity differ-
ences at the initial object position (see section 3). After this split the actor is
tracked further while the second component is detected as incorrectly classified
and eliminated. Summarizing resulting event constellations one can conclude
that initially a new motion is recognized, then the component splits up. One of
the components resulting from the split keeps moving, while the second one is
classified as non-moving a short period of time later. As a result a 'Remove’-
activity is hypothesized to have taken place.

These explanations show that the proposed activity detection is based on inter-
actions of tracked components exclusively. World or context knowledge is used
only to interpret the different activities with regard to the scenario under con-
sideration. Thus it is easy to transfer this approach to other scenarios as well,
where activities can be identified by moving entities and their interactions.

5 Results

To evaluate the presented algorithms we have chosen image sequences from the
the above mentioned scenario where assembly tasks are performed. In this section
we present three examples. The first one illustrates results of the graph-based
consistency checks, the two others show activity detection results. In each fig-
ure the first row contains several images of the underlying image sequence, the
second row segmented moving regions/components and in the bottom row the
development of the correspondence graph over time is visualized.

Figure 2 shows several images of a hand passing through the scene. Due to low
contrast between the bright background and the moving hand it is not possible
to completely detect it. Instead multiple moving regions result from the segmen-
tation process. At the beginning of tracking, these regions are correctly grouped
into one component which is easily tracked. However, after some frames, more
than one component results, caused by segmentation errors, and two indepen-
dent components are tracked in the following. This error can not be detected
until both merge again into one component only a few frames (t < fr) later.

) “« * . a
7 ;{n‘?\ £ :{u;\
f ;) - i ; ‘4
.2
falseaarm
detected

—(D—(1) sToP
PUT Y DD DD FALSE

Fig. 3. 'Remove’-activity: The hand grasps the cube and removes it.

Therefore, the events detected are assumed to be due to variance in segmentation
and the graph is corrected as shown: The split and merge events are removed

(marked gray in figure 2) and the associated graph nodes are connected directly
(dashed line).

T2~ | [[
.‘gf .‘§T "7?6 ;‘50 ;‘7‘50
M Y NI

s | | L
1 3
. e, L gl
el N)
OO0~

SPLY T

Fig. 4. ’Object Displacement’-activity: The 3-hole-bar is moved from right to left.

In the second sequence (see figure 3) a hand enters the scene removing a cube.
As shown, initially one single moving component is detected correctly. After
grasping took place, the hand starts to leave the scene and still one component
consisting of two regions is detected. This component finally splits into two com-
ponents, where the second one (id 2) results from intensity differences between
the background representation and the current image since the removed cube is
still assumed to be part of the background. Nevertheless, after 87 frames it is
identified as incorrectly classified moving, hence eliminated and the background
representation is updated accordingly.

The last example in figure 4 illustrates results from a more complex activity. The
3-hole-bar is moved from right to left. Due to interactions of moving components
one can deduce that the moving region appearing initially belongs to an acting
entity. The first split and subsequent false alarm indicates adding or removing of

an object. Since the same sequence of events is observed some frames later again,
either a second object has been removed or the first object has been moved to
this new position. To decide for one of the two cases is currently not possible
since to this end image data has to be scrutinized directly with respect to e.g.
significant gradient norms or object contours in the region of interest. Never-
theless one might hypothesize that an ’Object-displacement’-activity has taken
place which could be verified by high-level analysis.

6 Conclusion and future work

In this paper we presented an approach to detect activities within arbitrary
scenes. Based on motion detection and tracking, resulting interactions between
moving objects in the scene, called events, are analyzed. Since activities are
assumed to consist of specific constellations of events, typical activities of the
construction scenario under consideration can be segmented. In conclusion the
proposed strategy to scene analysis and event detection provides an opportunity
for robust pre-selection of scene parts where more detailed and elaborate analysis
steps can be performed. Thus scene understanding and high-level interpretation
is possible without the need for analyzing large amounts of data by focussing on
interesting regions where activities have been recognized.

This approach might in the future be extended to recognize more complex ac-
tivities, e.g. complete assemblies, where multiple objects are involved. Further
on more work is necessary to extract additional details from analysis steps per-
formed, e.g. to decide whether an object has been added or removed, since both
tasks currently share the same event constellation. At last the graph consistency
checks should be developed further.

References

1. Matthew Brand. Understanding Manipulation in Video. Proc. of 2nd International
Conference on Face and Gesture Recognition (1996)

2. Isaac Cohen and Gérard Medioni. Detection and Tracking of Objects in Airborne
Video Imagery. CVPR Workshop on Interpretation of Visual Motion (1998)

3. Gérard Medioni, Ram Nevatia and Isaac Cohen. Event Detection and Analysis from
Video Streams. DARPA Image Understanding Workshop (1998), Monterey

4. J. Fernyhough, A.G. Cohn and D.C. Hogg. Building Qualitative Event Models Au-
tomatically from Visual Input. ICCV (1998) 350-355

5. M. Irani, P. Anandan. Robust multi-sensor image alignment. PIEEE (1998) 905-921

6. Y. Ivanov, C. Stauffer, A. Bobick and E. Grimson. Video Surveillance of Interactions.
Proc. of the CVPR Workshop on Visual Surveillance (1998), Fort Collins, Colorado

7. Richard Mann, Allan Jepson and Jeffrey Mark Siskind. Computational Perception of
Scene Dynamics. Computer Vision and Image Understanding (1997) 65(2):113-128

8. Birgit Moller, Stefan Posch. Detection and Tracking of Moving Objects for Mosaic
Image Generation. LNCS 2191, Proc. of 23rd DAGM Symposium (2001) 208-215

9. Gert Rickheit and Ipke Wachsmuth. Collaborative Research Centre ” Situated Artifi-
cial Communicators” at the University of Bielefeld, Germany, Integration of Natural
Language and Vision Processing (1996) IV:11-16

10. Junji Yamato, Jun Ohya and Kenichiro Ishii. Recognizing Human Action in Time-
Sequential Images using Hidden Markov Models. Proc. of CVPR (1992) 379-385

