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ABSTRACT
Processing visual data is an important ability of interactive sys-
tems to act in dynamically changing environments. Looking
at the human visual and cognitive system this requires efficient
mechanisms for data processing and storage as well as intelli-
gent strategies for data acquisition. In this paper we present a
visual memory supporting efficient representation of image se-
quences of active cameras in an online fashion. The memory is
based on mosaic images extending the field of view of a camera
in space and time. As one prototypical field of application for
the memory active scene exploration is discussed. The tempo-
rally and spatially integrated data of the memory combined with
additional feature maps serves as an ideal starting point for the
selection of focus points. Hence the memory demonstrates the
combination of efficient acquisition and storage of visual data
and helps to provide interactive systems with high flexibility to
operate in dynamically changing environments.

1. INTRODUCTION

Acting in dynamically changing environments is a great
challenge for interactive and mobile systems. They have
to be designed flexible enough to cope with unknown sit-
uations. Scene understanding and behaviour planning is
usually achieved by analyzing data acquired with avail-
able sensor devices and interpreting these data based on
world knowledge. Especially visual devices yield an im-
portant source of information for scene analysis and un-
derstanding, providing data in terms of single images and
complete sequences. The latter ones contain static as well
as dynamic information, however, at the same time suffer
from large, redundant data volumes that hamper efficient
analysis.
Human beings strongly rely on visual data processing
when analyzing their environment and planning new be-
haviours. The human visual system includes a variety of
structures to efficiently memorize data of different seman-
tic levels and is based on selective, attention-driven data
acquisition. This allows for efficient information anal-
ysis despite limited processing capabilities. The goal to
achieve high flexibility in interactive systems based on vi-
sual data processing thus implies to supply systems not
only with efficient storage and analysis mechanisms for

sequences but also to combine these with active view point
selection to guide data-driven scene exploration.

In this paper we present our concept of a visual scene
memory that meets both requirements. It is based on mo-
saic images supporting storage-efficient representations of
image sequences. All images are warped towards a com-
mon coordinate system and are then integrated into a sin-
gle frame by fusing their color values thus removing re-
dundant information. We aim at representing data of sta-
tionary rotating and zooming cameras. Since our intented
field of application for the memory is given by interactive
systems mosaicing should be done in an online fashion.
The data represented in the mosaic needs to be accessible
at any point in time during image acquisition to not ob-
struct the interactivity of the systems. Besides, interactive
or mobile systems usually provide only limited ressources
for computation and storage rendering impossible the pro-
cessing of complete sequences simultaneously. Hence we
immediately integrate each new image into the evolving
mosaic overcoming the restriction to buffer the images.
The coordinate frame of our memory is defined based on
a polytope regularly arranged around the optical center
of the camera. It is represented with a set of tiles each
equipped with a local euclidean coordinate system. This
enables the direct application of conventional image anal-
ysis techniques to the iconic data and thus simplifies data
access, e.g., compared to cylinders or spheres often used
to represent mosaic images [1, 2]. In contrast to these ap-
proaches usually working offline (e.g., [3, 4]), iconic data
of the monitored scene is available immediately after ac-
quisition and integration of each new frame and without
need for explicitly rendering parts of the polytope.
Easy online update of the memory data is achieved facil-
itating an additional image plane, the focus image plane.
It augments the polytopial memory structure and allows
for efficient data update despite discontinuities between
different tiles. Finally, adequate representation of image
data including different levels of zoom is enabled by nest-
ing differently scaled instances of a polytope. According
to the tiled memory structure and the resolution hierarchy
we call these enhanced mosaic images multi-mosaics.
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Dynamic scene data yields important clues for scene in-
terpretation and understanding. However, independently
moving objects hamper image registration and cause blur-
ring in mosaic image integration as they do not conform
to the global motion model imposed. Detecting and mask-
ing these objects in mosaicing avoids this but results in
complete loss of dynamic information. The visual mem-
ory described here represents dynamic as well as static
information. While static scene parts are integrated in the
multi-mosaics data structure, dynamic parts are simulta-
neously extracted and represented separately in a graph
data structure. It may serve as a base in subsequent pro-
cessing steps but also allows deriving clues for interesting
events in a scene that are worth to be explored in detail.
One possible area of application for the memory is active
scene exploration. Many approaches have been published
(e.g., [5, 6]) to simulate human visual attention in artificial
systems. While most work relies on the analysis of single
image data (in some cases enhanced with motion informa-
tion from difference images), our visual memory allows
to extend view point selection to spatially integrated data.
Selecting new focus points, image data may be considered
that is no longer in the view of the camera but nonetheless
of importance. Equipped with additional feature maps the
memory supports the representation of interest measures
of certain regions of a scene, thus it is well-suited to com-
bine data storage and its active acquisition.
The remainder of this paper is organized as follows. Sec-
tion 2 introduces our multi-mosaic data structure. In sec-
tion 3 algorithms to extract and represent dynamic data
are discussed, while section 4 outlines the support of the
visual memory for active scene exploration. The paper
finishes with results in section 5 and a conclusion.

2. MULTI-MOSAIC IMAGES

A mosaic image is built from all images of a sequence
warping them into a common coordinate frame. Defining
this frame, the degrees of freedom of the camera, the area
of application for the mosaic images and the intended way
of processing the data have to be considered. We aim at
representing the complete field of vision of stationary ro-
tating and zooming cameras in an online fashion. Each
new image should be registered and integrated immedi-
ately into the evolving mosaic image without temporally
storing the data. Besides, euclidian coordinates should be
provided to support direct analysis of the mosaic data ap-
plying conventional image processing techniques.
One widely used coordinate frame for representing mo-
saic image data is defined by single planes. However, pro-
jecting image data acquired with stationary rotating and
zooming cameras onto a single plane results in large dis-
tortions rendering the mosaic image unemploylable for

Figure 1: Polytopial coordinate frame (rhombicuboctahe-
dron) with focus image plane attached (left) and sketch
of the hierarchical structure of the visual scene memory
(right).

further analysis. Cylinders or spheres yield a straightfor-
ward approach to represent image data from stationary
rotating and zooming cameras avoiding distortions [2].
However, explicitly representing spheres is more difficult,
particularly if not all images ever registered should be
kept (cf. [1, 4]). Online registration of new images also
yields a great challenge using spherical representations
since image registration is most comfortable adopting im-
age planes. Finally, using a spherical or cylindrical co-
ordinate frame violates for example the fundamental in-
variance of colinearity, which is explicitly or implicitly
assumed by a wide range of image processing techniques.
Hence performing image analysis, e.g., edge detection or
even more elaborate tasks like object recognition based on
regions, would require to develope new algorithms suit-
able to cope with non euclidean coordinates.

2.1. Polytopial Coordinate Frames

To overcome the problems outlined above our visual
memory relies on a coordinate frame defined by a set of
various tiles. These are arranged regularly around the op-
tical center of the camera. Their exact arrangement is
derived from polytopes approximating a sphere (Fig. 1,
left) and hence allowing to minimize distortions while at
the same time providing euclidean coordinates for im-
age processing. Each tile is located tangentially to the
sphere and equipped with a local euclidean coordinate
system. The origin of the 3D coordinate frame of the
polytope is located at the optical center of the camera. Its
z-axis is aligned with the optical axis of the camera on
acquisition of the first image of the sequence for conve-
nience. The scaling of the polytopial tiles is defined as
the focal length of the camera. It is extracted facilitat-
ing an offline calibration strategy providing a functional
mapping between hardware parameters and correspond-
ing focal length which is used in online generation. Self-
calibration techniques that might be used alternatively for
online estimation of the focal length have proven to be too
unstable in long-term online mosaicing.
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Figure 2: Multi-mosaic representation of image data acquired with varying camera zoom settings.

2.2. Multi-Resolution Representation

Image sequences often contain image data acquired with
different camera zoom settings. Usually, such image se-
quences are integrated into a single mosaic image cover-
ing only a single level of resolution. However, this is not
adequate since data acquired with higher resolution has to
be downsampled and low-resolution data has to be inter-
polated. This shows, that image data with varying granu-
larity demands to use a hierarchy of differently scaled mo-
saic images for suitable representation. We meet this re-
quirement by nesting tiles derived from differently scaled
instances of a polytope into each other (Fig. 1, right).
They cover a discrete set of resolutions. As new image
data becomes available the one instance is chosen for data
representation that best meets the focal length of the in-
put image (Fig. 2). Since most of the time not all parts
of a scene have to be represented simultaneously and in
all resolutions, the polytope instances are only partially
represented yielding a sparse memory representation [7].

2.3. Online Generation and Update

Mosaic images are generated estimating parameters ~p of
a motion model T~p for each image of a sequence (regis-
tration). The motion model describes the camera motion
and hence allows for its compensation. All images are
warped towards the common coordinate frame and then
integrated fusing their color information. Both steps can
be performed offline or online. While in offline processing
all images are registered and integrated simultaneously,
we generate our multi-mosaics in an online fashion. Each
image is registered and integrated as it is acquired into the
evolving mosaic image yielding a continuous data update.
However, the resulting representation is optimal only lo-

cally since registration and integration are solely based on
the current input image and the mosaic image itself which
results in accumulation of errors over time. Nevertheless
such a strategy is favorable especially if the mosaic im-
age generation should be performed on systems provid-
ing only limited storage and processing capabilities as it
is usually the case with mobile interactive systems.

2.3.1. Registration

The motion of stationary rotating and zooming cameras
can exactly be modelled with homographies. Their pa-
rameters are estimated using projective flow [8]. The al-
gorithm is based on local optical flow computations, glob-
ally constraint by the projective motion model. It is imple-
mented in an iterative framework utilizing piecewise lin-
ear homography approximations. A resolution hierarchy
(which must not be mixed up with the hierarchical mem-
ory representation outlined in section 2.2) is applied to ac-
count for large displacements between images. Since pa-
rameter estimation in levels of low resolution still requires
a minimum of image quality the resolution hierarchy can-
not be applied to arbitrary large displacements. Hence,
camera data for rotation and focal length is additionally
used to derive an initial estimate for the parameters. This
leads to improved robustness and faster convergence and
at the same time allows for larger rotations between suc-
cessive frames. Even non-overlapping frames can be reg-
istered to the mosaic, provided suitable reference data in
the multi-mosaic representation. Error accumulation is re-
duced by estimating parameters in frame-to-mosaic-mode
[9]. Each image is registered using a suitable clip of the
mosaic. Hence all images formerly integrated at least im-
plicitly take part in the current estimation step yielding
improved image quality without processing all images of
a sequence simultaneously.
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2.3.2. Integration

Image integration is accomplished by selecting a single
input image as source for each mosaic pixel. Selection is
based on the time-stamps of the input images. Each pixel
is assigned the value from that input image providing the
most recent data. This strategy leads to a segmentation of
the mosaic image into regions each originating from a dif-
ferent image of the sequence. Visible seams might result
between neighboring regions in case of changing lighting
conditions or camera exposure settings. Hence linear or
sigmoid blending functions are applied in a small neigh-
borhood along region boundaries to smooth transitions.

2.3.3. Focus Image Plane

Both in registration as well as in integration the struc-
ture of the polytopial coordinate frame is well-suited with
exception of discontinuities between different tiles. Ex-
plicitly accounting for them in registration and integration
is time-consuming, hence we adopt an additional image
plane to simplify processing even more. A focus image
plane (FIP) is attached to the polytope (Fig. 1) tracing
the movements of the camera and its focal length. It aug-
ments the underlying polytopial structure defined by the
arrangement of the single tiles and is used as reference in
registration and integration. Image data is only projected
onto the polytope itself if the position and orientation of
the FIP require an update. This happens if the camera
orientation has changed significantly from that one repre-
sented by the FIP and hence new image data is projected
outside its domain. Since the FIP is chosen to be two to
three times larger in size than a single input image usually
several images can be registered and integrated before up-
dates become necessary. Image data is then projected onto
the related tiles. Subsequently position and orientation of
the FIP are updated and new reference image data is back-
projected from the polytope to the new FIP.

3. DYNAMIC SCENES

Mosaicing algorithms compensate for the camera motion
during acquisition of an image sequence. As outlined pa-
rameters of a suitable motion model are estimated from
differences between subsequent images based on the as-
sumption that these differences are exclusively caused by
camera motion. This assumption does not hold in dynamic
scenes where differences between images are induced by
the camera motion as well as by independently moving
objects. Their motion is not covered by the global motion
model and can hamper registration and integration. We
cope for dynamic parts of a scene by detecting indepen-
dently moving objects and masking them from registration
and integration. This yields a mosaic representation in-

cluding only static scene parts. However, dynamic data is
often most relevant for scene analysis and interpretation.
Hence we additionally track moving objects, extract their
dynamics and represent the data in a supplementary graph
data structure. It serves a suitable base for data analysis
but also allows verification of motion data and consistency
of static data represented in the multi-mosaic memory.

3.1. Motion Detection

Various approaches are known in the literature for detect-
ing differences between registered images. They range
from relatively simple intensity residual calculations and
algorithms based on normal flow [10] up to statistical [11]
and elaborate optical flow based methods [12]. Within the
context of this work we primarily intend to detect inde-
pendently moving objects without exactly describing their
motion by means of appropriate motion models. Hence
we adopt residual-based approaches. In previous work
[13] we also employed normal flow and convergence anal-
ysis [14], however, these techniques did not result in im-
proved performance. Hence detection of independently
moving objects within a sequence is accomplished by cal-
culating normalized pixelwise intensity residuals RI(x, y)
between registered images Iref and Iω . We define the ref-
erence image Iref to be the clip of the mosaic image al-
ready used for registration. Iω denotes the current input
image I warped to the coordinate frame of Iref applying
the estimated projective transformation T~p. Residuals are
averaged in a neighborhood N of each pixel (x, y) to ac-
count for image noise:

RI(x, y) =
1

C

∑

(x′,y′)∈
N(x,y)

(

Iref (x′, y′)

Īref

−
Iω(x′, y′)

Īω

)2

C = |N(x, y)| , Iω = T~p (I)

The residuals are normalized with respect to the average
intensities Īref and Īω in the images to reduce the influ-
ence of varying image energies. The resulting residuals
are thresholded using an empirically chosen threshold θR

yielding a pixelwise motion map CθR
(Fig. 3(c)):

CθR
(x, y) =

{

0, if RI(x, y) ≤ θR, (static)
1, otherwise (moving)

(1)

Large residuals indicate image locations that were not reg-
istered by the global motion model and most of the time
result from independently moving objects.
Pixels detected as moving are masked during integration
and for registration steps of subsequent frames yielding
a robust sequence mosaicing even in case of large mov-
ing objects [15]. However, since moving scene parts are
initially unknown a proper initialization is required. We
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(a) reference mosaic (b) new frame, already
registered to the mosaic
coordinate system

(c) pixelwise motion map (d) resulting mosaic image
with moving pixels omit-
ted in integration

Figure 3: Residual-based detection of an independently moving booklet at the bottom of the new frame. Shifting an object
from one position to another yields two moving regions. Neither its former position nor the current one match the data
represented in the mosaic image.

assume that there are either no or only small moving ob-
jects present for the first two images of the sequence to
be processed. Otherwise an initial motion map has to be
provided externally.
Figure 3 shows two registered images and the resulting
map of pixels classified as moving. The object shifted
from one position to another yields two compact groups
of moving pixels: Neither its current position nor the for-
mer one match the image data represented in the mosaic
and thus introduce large residuals. As moving pixels are
masked during integration the moving object is not inte-
grated in the mosaic image as intended in our approach.
However, its old position is kept in the mosaic represen-
tation of the static scene background although the object
has already disappeared and became part of the dynamic
scene foreground. This obviously would lead to an incon-
sistent data representation. Hence such inconsistencies are
eliminated performing an additional analysis of object dy-
namics as described in the remainder of this section.

3.2. Component Tracking

Masking independently moving objects during integration
yields mosaic images restricted to static scene parts. At
the same time all dynamic information of objects gets lost.
To overcome this limitation we extract dynamic data by
tracking moving objects over time (more details can be
found in [13]). This is accomplished by first applying
morphological operations to the motion maps CθR

(x, y)
and then segmenting regions from this data. Neighbor-
ing regions according to small point distances are grouped
into connected components to account for variance in seg-
mentation and tracked over time. Small regions with an
area below a certain threshold are omitted. Matching be-
tween successive frames is performed based on intensity
histograms, size and position data. All components of
both images are matched pairwise against each other. If

connected components are left without a valid match they
are decomposed into sub-components and matched again.
In doing so even disintegration and merging of moving
objects can be detected.
Since no model assumptions about moving objects are
included, only rigid or slow deforming objects can be
tracked by this approach. We prefer this approach to not
limit tracking of objects to special classes applying ex-
plicit models. We note that in any case all objects can be
detected and masked for robust mosaicing as discussed in
the preceeding subsection.

3.3. Analysis of Trajectories

Tracking connected components yields trajectories spec-
ifying their positions over time defined in terms of the
centroid positions. These trajectories are represented in
a data structure called correspondence graph. Nodes are
associated with matched connected components and sub-
components. Edges indicate matches and are labeled with
pairwise match distances. Each node contains as addi-
tional information component specific data like the du-
ration of tracking and the variance of centroid positions
within the last frames. The latter one enables to check the
consistency of the motion data. Spurious object positions,
e.g., the old position of the formerly static booklet in Fig. 3
(cf. section 3.1), are tracked over time but do not show
significant changes of position. Thus, the variance of cen-
troid positions is very small and allows for identification
of these situations. The corresponding components can
be marked as non-moving and the mosaic representation
is updated by integrating image data which was initially
masked from integration. In this way data consistency of
the mosaic image is guaranteed with a small shift in time
according to the number of frames needed for variance
analysis. This is also true for cases where objects change
between static and moving, as described: Analysis of tra-
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jectories allows toggling between an interpretation of the
obejct being part of the static background or belonging to
the dynamic scene foreground.

4. ACTIVE SCENE EXPLORATION

Active cameras provide interactive systems with a large
flexibility in visual data acquisition. However, large data
volumes of the image sequences impede easy extraction.
Exploiting redundancies, the amount of data can be re-
duced representing the sequences using mosaic images as
described. Additionally, already during acquisition the
data volume can be kept small by selective acquisition.
Most of the time not all parts of a scene are equally in-
teresting for exploration. Rather only a few regions are
worth to be scanned in detail. Hence guiding attention to
those interest points helps to reduce the overall amount of
data the system has to cope with.
One question raising in selective data acquisition is the
”Where to look next”-problem. Many proposals published
in this area answer this question by simulating mecha-
nisms of human visual attention. Human attention is trig-
gered by a variety of different features like color, sym-
metry, size, texture, contrast or motion [16]. All fea-
tures are individually weighted according to underlying
goals. In artificial systems such mechanisms are for ex-
ample simulated based on features maps and/or neural net-
works (e.g., [17, 18]). In most approaches the image data
used to select a new focus point is restricted to the cur-
rent input image. Sometimes this data is combined with
motion data from residual images and maps masking for-
merly focused points in a scene. However, human atten-
tion is not restricted to analyzing the current sensor input.
Rather memorized data is equally important. Human be-
ings often guide attention to scene points that are currently
not in their field of view but were some moments before.
Such points often provide important information to solve a
given task. This implies to make use of spatial integration
in artificial systems and to avoid restricting focus point
selection to data of the current input image. Integrating
visual data allows to search for focus points directly on
the memorized data without need for expensive hardware-
based re-explorations of a scene. Zooming to a given fo-
cus point reduces the current field of view of a camera.
Keeping formerly acquired data in memory supports de-
tailed data acquisition without loss of global context and
relations. A mosaic-based memory representation as pre-
sented in this paper yields a well-suited starting point for
efficient view point selection in active scene exploration.
To focus on the general idea how to employ the multi-
mosaics for scene exploration we use a simple measure
based on entropy combined with motion data. More so-
phisticated approaches can, however, easily be integrated

in a straightforward way. In the next subsection we out-
line the incorporation of additional features maps into the
multi-mosaic structure, while the remaining subsections
discuss interest measures and coarse as well as detailed
exploration strategies.

4.1. Feature Maps

The multi-mosaic data structure outlined in section 2 is ex-
panded with additional polytopes to support active scene
exploration. The first one represents time-stamps indi-
cating the last point in time the region has been in the
field of view of the camera (called visit). The other poly-
topes store different local interest measures of the mosaic.
Points in the scene are regarded worth to be focused if they
receive a large interest index compared to other points in
the scene and have not been in the camera’s field of view
for some period of time.
The polytopes are scaled to a coarse resolution thus data
is represented for groups of neighboring pixels (usually
sized 15 × 15) instead of single pixels. Their resolution
is fixed which is primarily due to memory efficiency and
has proven sufficient for our experiments. Online data up-
dates are performed analogously and in parallel to updates
of the image data on the polytope using additional focus
planes.

4.2. Coarse Exploration Triggered by Entropy

As mentioned we use local entropy as a single interest
measure. This yields regions with large contrast and a
wide variety of different pixel values as interesting. The
local entropy E(x, y) is calculated in a neighborhood N

of a pixel (x, y):

E(x, y) =
∑

v=0...255

1

pv

log pv (2)

pv =
1

|N(x, y)|

∑

(x,y)∈N(x,y)

δI(x,y),v (3)

A new focus point f is selected based on the interest mea-
sure E(x, y) weighted with the time elapsed since last
visit tl:

f = argmax
(x,y)

M(x, y) = argmax
(x,y)

E(x, y) ·
(t − tl)

γ
(4)

γ denotes a scaling factor controlling the period of time af-
ter which an explored focus point may capture full atten-
tion again. Pixels in a rectangular neighborhood around
the current focus point are explicitly masked in subse-
quent exploration steps and their interest measures are
only gradually increased again (black rectangles in figure
4). This prevents the algorithm from continuously fix-
ating one single region with high entropy. Once a new
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Figure 4: Top: Attention maps evolving over time; Bottom: corresponding mosaic images. Bright intensity values indicate
regions of high interest. Selected focus points are marked by white squares while black rectangles result from masking the
currently focused region in subsequent exploration steps.

focus point has been selected the camera moves towards
it. Since large rotations between successive frames induce
increased risk of registration failure, they are divided into
smaller moves registered robustly one after the other.

4.3. Detailed Exploration Triggered by Entropy

Scanning a scene in one single resolution is not suffi-
cient for most analysis tasks. While large parts of a scene
are adequately represented in coarse resolution each scene
usually includes regions of special interest that are worth
to be represented with more details. Such regions are for
example defined by specific objects. Our exploration al-
gorithm accounts for such regions by exploring them in
detail. Interesting regions are selected based on threshold-
ing local entropy. If a focus point is selected for fixation
and its entropy exceeds the empirically chosen threshold
the camera first focuses the point and then initiates zoom-
ing. Currently a fixed number of zoom steps is performed
before exploration in coarse resolution continues. Auto-
matically determining the number of necessary steps to
adequately focus the region of interest can be achieved by
analyzing local structure or texture information.

4.4. Detailed Exploration Triggered by Motion

Dynamic data yields important clues for scene under-
standing. Especially addition and removal of objects are
of great interest since these events indicate changes in the
scene structure and provide valueable clues for intepreta-
tion of the visual data. Moving objects cause differences
between the current image and the reference mosaic data
and thus are detected by our motion detection algorithms
(sec. 3). In particular, objects inserted as well as objects
removed from the scene yield moving regions that are ac-
tually static and do not show variance of their centroid

positions as described in section 3.3. Detection of such re-
gions is included in the computation of interesting points
and as a consequence these regions immediately capture
attention. As for detailed exploration triggered by entropy
the system now switches to zooming mode to get details
about the changes. Subsequently active exploration con-
tinues by searching for a new focus point in coarse resolu-
tion using entropy. To account for robust motion analysis
exploration is limited to small saccades in case of moving
pixels detected within the field of view of the camera.

5. RESULTS

The visual memory including its prototypical application
to active scene exploration have been tested on various im-
age sequences of a meeting room (see images on the left
of figure 5 for an example). The scene is dominated by
a table with a couple of different objects. Figure 4 illus-
trates the first four steps of a coarse exploration triggered
by entropy. The top row contains attention maps evolving
over time. In the bottom row the corresponding mosaic
images are depicted. Bright intensity values indicate large
interest measures M(x, y). New focus points selected ac-
cording to these measures are marked by white squares
in each of the maps. Black rectangles indicate the neigh-
borhood of the currently selected focus points masked for
further exploration. The algorithm starts by subsequently
guiding the camera to the three books on the left. Due to
their highly textured covers entropy values are larger than
for other objects in the scene. However, as time passes by
other objects become equally interesting due to temporal
weighting. Hence the algorithm is guided to explore re-
gions of high entropy first, but to fixate regions with low
interest measures later on as well.
In figure 5 a snap-shot of another exploration session is
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Figure 5: Mosaic image with some regions automatically explored in detail by zooming in. Regions were selected either
based on high local entropy or motion (top left region). On the left, some images of the complete sequence are shown.

shown, where some interest points have been explored in
detail by zooming in. Three of these regions were selected
due to local entropy exceeding a certain threshold. The
forth region (magnified in the top left corner of the mo-
saic image) was selected due to motion. As obvious from
the image sequence depicted at the left hand side of the
figure, the book was initially not present in the scene and
added during exploration. It was detected as moving by
our motion detection algorithms and tracked over time.
However, after the book has been positioned on the table
the variance of its centroid position vanished. The (for-
merly) moving region was classified as ”spurious” indi-
cating changes in the scene structure. Hence the corre-
sponding region was regarded highly interesting for de-
tailed exploration. Furtheron corresponding image data
was integrated into the mosaic representation to recover
consistency with the static scene background again.

6. SUMMARY AND CONCLUSION

Designing interactive systems operating in dynamically
changing environments is a challenging task. Especially
the analysis of visual data is an important ingredient to-
wards this goal. In this paper a visual memory was pre-
sented accounting for efficient representation of image se-
quences acquired with active cameras. The memory is
based on mosaic images extending the field of vision of
cameras and providing spatially and temporally integrated

data representations. These so called multi-mosaics are
generated in an online fashion providing access to the rep-
resented information immediately after the integration of
new data. The topological structure of the memory is de-
fined by polytopes yielding adequate coordinate frames
for image data from stationary rotating and zooming cam-
eras. Euclidian coordinate frames on single tiles support
online registration and integration, as well as the applica-
tion of standard image analysis algorithms directly to the
data. A resolution hierarchy of polytope instances allows
adequate representation of visual data acquired with dif-
ferent camera zoom settings.
As one prototypical field of application for the visual
memory active scene exploration is discussed in this pa-
per. The memory’s extended field of vision yields a well-
suited base to efficiently support selection of focus points.
In contrast to other approaches based on analyzing exclu-
sively the current sensor input for focus point selection
our memory supports to search the complete volume of
visual data ever acquired and memorized. To this end the
visual memory is equipped with additional polytope in-
stances storing time-stamps and interest measures. Not
all parts of a scene are equally interesting. Rather only
some few points are worth to be scanned in detail. Our
algorithm accounts for this by automatically zooming in
to regions with exceptional high entropy or regions where
changes in the scene structure were indicated due to anal-
ysis of motion trajectories.
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To conclude, the visual memory structure presented in this
paper demostrates how to efficiently memorize and pro-
cess image sequences of active cameras. The extended
field of vision of mosaic images yields a well-suited base
for efficient active scene exploration and thus yields clues
how to efficiently combine data storage and acquisition in
building flexible interactive systems.
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[15] B. Möller, D. Williams, and S. Posch, “Robust im-
age sequence mosaicing,” in Pattern Recognition,
Proc. of 25th DAGM Symposium, Magdeburg, 2003,
LNCS 2781, pp. 386–393, Springer.

[16] J.M. Wolfe, “Visual attention,” in Seeing, De Valois
KK, Ed., pp. 335–386. Academic Press, San Diego,
CA, 2. edition, 2000.

[17] M. Bollmann, R. Hoischen, and B. Mertsching, “In-
tegration of static and dynamic scene features guid-
ing visaul attention,” in Mustererkennung. 1997, pp.
483–490, Springer.

[18] J. Steil, G. Heidemann, J. Jockusch, R. Rae, N. Jung-
claus, and H. Ritter, “Guiding attention for grasping
tasks by gestural instruction: The gravis-robot archi-
tecture,” in Proc. of IEEE Conf. on Intelligent Robots
and Systems (IROS), 2001, pp. 1570–1577.

Proceedings of Mirage 2005, INRIA Rocquencourt, France, March, 1-2 2005

125


