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ABSTRACT
In this paper a Hidden-Markov-Model (HMM) is adapted
to analyze curves from amperometric biosensors. The main
challenge is to detect a specific time interval during sam-
pling, representative for the concentration, and to detect a
time-point at which measurement may be terminated. This
is in stark contrast to other applications of HMMs where
they are implemented for pattern classification tasks. An
appropriate algorithm for analysis is devised and a specific
initialization of the Baum-Welch algorithm developed with
a modification of the training algorithm itself. Results for
a representative set of signal curve from different analytes
are given.
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1 Introduction

Hidden-Markov-Models are employed almost exclusively
as the basic technique for automatic speech recognition
systems since the late 80’s. Other applications of HMMs
have emerged in the course of the last years, for example
face- and handwriting recognition [1, 2, 3] or analysis of
biological sequences [4]. In this work we propose to apply
HMMs for analysis of signal curves originating from am-
perometric biosensors. The aim of this analysis is to mea-
sure the concentration of analytes, like glucose, lactate, al-
cohols or hydrogen peroxide, in a given solution. A specific
time interval within the signal has to be determined rather
than recognition (or classification) of the signal which is
in contrast to other applications of HMMs like speech or
handwriting. Another feature, perhaps unique to the use of
biosensors, is that a time point to terminate measurement
must also be determined by the HMM, since it is not given
a prior. These special requirements have been taken into
account with appropriate modifications of the analysis and
training procedures.

A simple method for analyzing biosensor curves has
been proposed [5]. This method is based on a fuzzy logic
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pattern recognition system, needs only sparse resources
of memory and computing time and therefore permits a
straightforward implementation in microcontroller-based
hand-held measuring devices. This method however em-
ploys only local processing of the curves and is unable to
detect a suitable time point to terminate the sampling pro-
cedure. In this paper we describe an enhanced adaptive
method using Hidden-Markov-Models. A first approach
based on a set of discrete HMMs, one for each class of sig-
nal curves, has been published in [6], preliminary results of
the more compact approach with one single HMM used in
this paper have been described in [7].

In the next section we give a short overview of am-
perometric biosensors and the resulting signal curves. Our
analysis on the basis of appropriate preprocessing using
one single HMM modeling the different phases of the mea-
surement and taking signal variations into account is de-
scribed in section 3. Section 4 focuses on training of the re-
sulting HMM, especially initialization of parameters and a
modification of the Baum-Welch-Algorithm used. Results
comparing different variants are presented in section 5,
while section 6 gives some concluding remarks.

2 Amperometric biosensors

Biosensors are composed of a biological receptor compo-
nent (e.g. an enzyme) and a transducer (see [8]). The an-
alyte fits into the biological component of the sensor in
analogy to a lock and accompanying key. As a result the
physico-chemical properties of the component change and
consequently the signal detected by the transducer changes
as well, which is an electrical current

�������
	���
in our case

(see figure 1). After an adjustment phase which typically
includes an overshoot, the signal settles to a smooth pro-
gression in the main phase. However, the signal does not
converge to a stable state, i.e. a constant current despite
the smoothness of progression. Rather, there is only a rela-
tively short time interval within this main phase where the
current

�������
	 � 
takes the correct measurement value

���
to be detected, from which the analyte concentration

	 �
is to be deduced. A main aim of the analysis is to detect
this particular time interval, called measurement interval in
the following. As will be obvious form the discussion and



examples in the next paragraphs, this measurement inter-
val can only be detected using also a context of the curve
subsequent to the measurement interval itself. Therefore a

Figure 1. Schematic shape of a signal curve showing the
various events and phases.

further requirement of the analysis is to determine a time
point at which the sampling of the current may safely be
terminated.

The electrical current has linear characteristics for the
measurement interval and over a sufficient range of con-
centration: � � � � ��� ��� � � �����
	 	 � �
where

� � is a constant offset and
���

a concentration-
depending signal-current. Thus, the scaling factor � has
to be calibrated first. Subsequently, the currents

� � and
� �

have to be determined separately for each measurement in
order to deduce the correct concentration.

In this work we concentrate on a specific proce-
dure for single measurements with reusable amperometric
biosensors fabricated by SensLab GmbH Leipzig (see [9]).
The sensor has to be dipped into a buffer solution to deter-
mine

� � first. The buffer solution is then removed from the
sensor, which is called the preparation phase. Subsequently
the sensor is dipped into the sample solution under consid-
eration, resulting in a characteristic signal-curve composed
of the adjustment and main phase introduced above. The
shapes of theses curves vary considerably depending on an-
alyte, sensor type, sensor handling, and concentration of
the sample solution. In addition, also the measure interval
differs severely between curves as figure 2 shows for dif-
ferent sensor handling and different concentrations. These
variations are to be tolerated by the method presented in
this article. As mentioned, the scaling factor � has to be
calibrated in advance, which is accomplished with the same
procedure using a solution of defined concentration.

3 Modeling and analysis

In this section our approach to model and analyze biosen-
sor curves using HMMs is described, while learning of this
HMM is deferred to section 4.

Figure 2. Typical curves for different sensor handling and
low (class 3,4) resp. high (class 1,2,5,6) analyte concentra-
tions. The point of time for correct measurement within the
measure interval is marked by a small vertical line.

3.1 Preprocessing and feature extraction

The absolute sample values do not contain any relevant
information to match the values measured to the various
phases described in the last section and to determine the
correct measurement interval. Therefore, an appropriate
feature extraction mechanism has to be employed: The
sampled values are first smoothed using a sliding aver-
age (window size of 30 samples) to reduce noise. The lo-
cal characteristics are subsequently captured computing the
first and second derivates of the sensor curve. Again a win-
dow of 30 samples is used to approximate the curve using
a quadratic function and calculate its derivatives.

In case a discrete HMM is employed, these contin-
uous features have to be quantized in addition. We use a
two dimensional Self Organizing Map (SOM) [10] with����

units in our system. Initial experiments yielded no
improvement using a larger set of symbols.

3.2 Modeling of the measurement process

The resulting sequence of features, discrete or continuous,
is now interpreted as originating from a discrete or semi-
continuous HMM. The basic idea is to model the differ-
ent phases of the measurement procedure, as described in
the last section, with corresponding phases of a HMM (see
figure 3). Within the HMM each phase is represented by
one or more states using strict left-to-right state transitions.
A feasible approach to cope with the different classes of
curves is to model each class with its own HMM, as pro-
posed in [6].

Since we are not interested in classification accord-
ing to curve type, in this paper we use a single HMM in-
stead. This results in a more compact solution better suited
for an implementation in a hand-held measurement device.
The main idea is to combine similar curve phases from dif-
ferent classes and represent each combined phase by a se-
quence of HMM states. This is motivated by the observa-
tion, that different curve classes as shown in figure 2, share
a common shape of some phases. For example, the ad-



Figure 3. A single HMM (lower part) modeling a sample
curve (middle part) is shown. The upper part shows manual
marks as employed for training.

justment phase of class 3 and 4 is virtually identical, while
on the other hand the main phase is equivalent for classes
5 and 6 respectively. These considerations result in the
model shown in figure 3: The preparation phase (removal
of buffer solution) is shared by all curves and modeled by
a single state � . The observation sequence is subsequently
interpreted to originate from one of � different parallel
paths ��������	�
� ����� � ��������
�	� ������

�
�	�
�

� ��������
�	� ������ mod-
eling the adjustment phase. In the HMM used for the re-
sults presented in this paper, we use three parallel paths of
three states each, as depicted in figure 3.

The following main phase and End of measurement
is again modeled with parallel paths, in this case � paths
�����	����������� � � �
�	�

� ����� �!���"�#�$� � . This main phase is
differentiated into three sub phases: The measurement in-
terval represented by states �!% is flanked by a pre- and
post-measurement interval ��% and �"% respectively. The
measurement value

� �
is determined by maximization

over all current values
����� 

within sub phase ��% . The shape
and position of this main phase depends critically on the
class of the curve under consideration. We use two paral-
lel paths in our experiments (see figure 3) corresponding
to the main phases of class 1 up to 4, and classes 5 and 6
respectively.

It is important to note that the (sub) phases �&% and �'%
do not model differences in the underlying physical process
with corresponding differences in the shape of the curve,
but rather describe semantic discrimination: As soon as the
HMM has stayed sufficiently long in the post-measurement
phase �"% and reaches the state �$% we have adequate con-
fidence to already have observed the measurement interval
of the measurement and hence may end the measurement
process.

3.3 Analysis

To allow for this detection of the end of measurement, The
analysis proceeds for incrementally growing prefixes () of a
virtually infinite sequence of feature vectors (see also fig-
ure 4 for pseudo code of the algorithm) to allow for the
detection of the end of measurement. For each prefix () the
optimal path (* � is computed using the Viterbi algorithm,
i.e. the sequence of states which produces the observed
prefix with maximal probability given the HMM + . In case
the last state * �, of this optimal path is one of the states �$%
modeling the phase End of measurement the measurement
interval to take the measurement value

� �
as already been

observed and the sampling of values
����� 

can be termi-
nated. A maximum admissible time -/.1032 is specified to
take potential errors into account and the sampling of mea-
surement values is terminated if exceeded.

-54 �76
repeat

-84 � - �:9
fetch new sample value

� � - 
compute ) , and derive new prefix () � � ) �

�
�	�
�

� ) , 
compute optimal path (* � �<;>=@? AB;#CDE � � (* � ()GF + 

(Viterbi algorithm)

until H * �,JILK ��� � �'� �	�
�
� �$�NMPORQ � - � - .10S2 

if
� * �, I K � � � � � � �	�
�

� � �TM  Q
HVU �RW -84 * �XYILK ��� � �Z� � �	�
�

� �!�NMPO
then � � �:AB;>CX 4 * �X I K � � � � � � �
�	�

� � � M ����� 
else

error

Figure 4. Pseudocode of the analysis

Using the determined optimal state sequence all cur-
rent values

� � � 
associated with one of the measurement

states �Z% are finally utilized to calculate the measurement
value

� �
. If the maximum specified time -/.1032 has been

exceeded and a final state �$% not been reached, however a
measurement state �!% has already been reached within (* �
at least once, it is still possible to determine a valid

� �
. In

this case a warning is given (which is not reflected in the
pseudo code). If even this fails, the measurement has to be
rejected with an error.

4 Training

An important property of HMMs is the availability of effi-
cient procedures to learn the transition and emission prob-
abilities characterizing the model from a set of sample
curves. We use the well known iterative Baum-Welch al-
gorithm from [11]. In case of a semi-continuous HMM we



use the variant of Baum-Welch as described in [12], where
the codebook is trained using feedback from the HMM es-
timation. In the following subsections we describe the ini-
tialization of the parameters and then two modification to
the Baum-Welch algorithm specific to our application.

4.1 Initialization of parameters

Due to the properties of the Baum-Welch algorithm, the
choice of suitable initial parameters – especially for the
emission probabilities – is very important and are there-
fore estimated from the training curves. It is crucial for
our application that not only the model is adapted to the
curve as a whole, but in addition each states has to adopt
as precisely as possible to the particular phase of the sig-
nal curve it models. Therefore we manually mark relevant
positions within each curve of the training set to allow for
a finer initialization of emission probabilities (see also fig-
ure 3). Besides the beginning and end of the measurement
which are available anyway, only four relevant positions
have to be marked using expert knowledge for each training
sample to derive the duration of all phases and sub phases:
The start of the adjustment phase, start and end of the main
phase, and the precise point of time to take the measure-
ment value

� �
. From the last mark the sub phases corre-

sponding to the measurement phase (modeled by state � % )
are derived as a symmetric intervals of 8 seconds duration.
The initialization is treated differently for the preparation,
adjustment, and main phase1. The emission probabilities
of the preparation phase modeled by state � are initial-
ized with the relative emission frequencies derived from the
marked sections in all curves of the training set. Likewise,
the emission probabilities for all states � %� in the � differ-
ent parallel paths are first initialized identically from rela-
tive frequencies in the marked adjustment phase of sample
curves. Subsequently random noise is added to the emis-
sion probabilities of these states to allow adaptation to dif-
ferent types of adjustment phases in an un-supervised way.
In contrast, for the initialization of states in the main phase
the manual classification of sample curves to curve classes
is exploited: For each main phase �#��% �Z% � % � the emis-
sion probabilities are initialized using only curves form the
training set of the type assigned to this path. (As stated in
subsection 3.2, curve class 1 up to 4, and classes 5 and 6
are assign to one of the parallel paths each.) Since also sub
phases have been marked, emission probabilities for the-
ses states can be initialized very precisely from the corre-
sponding frequencies to allow for good localization of the
measurement interval during analysis.

4.2 Modification of Baum-Welch algorithm

The additional knowledge supplied by the hand labeled in-
tervals for the various phases in all sample curves may also

1No initialization is needed for the states � �
as discussed in subsec-

tion 4.3

be exploited to enhance the training procedure itself. For
the standard Baum-Welch, in the maximization step of each
iteration the transition and emission probabilities are up-
dated. In short, this is accomplished using appropriate ex-
pectations with regard to the old HMM and the whole ob-
servation sequence () . For example, the rule to update the
the probability to emit Symbol

�
� from state � % to the new

value
��
% � is given by the standard Baum-Welch algorithm

for the discrete case as follows:

��
% � �

�
X
	 ���������� %

��� 

,�
X�� � � %

��� 
�

where � %
���  � � � * X � � % F ()

� +  is the probability to be in
state � % at time

�
with regard to the observation () and the

old HMM + of the last iteration.
Since hand labeling of phases constrain potential

states of the HMM for a given symbol ) X of the observa-
tion, which is normally hidden to the outside, we are in
the position to update only with respect to these admissible
observations:

��
% � �

�
X
	 ���������������� � 0 
. � ����� !�" #%$'&(�)+* � %-,

��� 

�
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%
��� 

�

A state � % is said to be admissible for * X of a given curve,
if � % is one of the states modeling the phase, ) X has been
assigned to. For the sub phases of the main phase the curve
class has to match as well. It is noted, that these are ex-
actly the same constraints employed for the initialization
as described in the last subsection. The update rule for the
transition probabilities as well as update rules for the semi-
continuous case are modified analogously.

4.3 Detection of end of measurement

As already stated, in addition to the detection of the mea-
surement interval, an important problem is the detection of
the end of measurement. As described in subsection 3.2,
the interval of time required to reliably detect the end of
measurement is modeled with states �&% and therefore with
the transition probabilities from states � % to � % . The
curve characteristics in the post-measurement phase, how-
ever, are identical for states �&% and �'% as already stated.
Thus the transition probability cannot be estimated by the
Baum-Welch algorithm. Therefore we train the HMM up
to states �"% using complete observation sequences. Subse-
quently the final states �$% are added with the same emis-
sion probabilities of the corresponding state �&% . The state
duration for each state � % is estimated using the average
duration of the post-measurement phase of the correspond-
ing curve classes as previously marked in the training data.
Using these average durations, the transition probabilities
from states �"% to states �'% are calculated.



5 Experimental results

In this section we give results for curves using reusable am-
perometric biosensors manufactured by SensLab GmbH.
First we evaluate with regard to manually labeled measure-
ment values

� �
to compare different HMM and training

variants while eliminating effects of inaccuracies of the
sensor itself. Subsequently we compare against correct
concentrations of the analyte, which is of course the real
goal to achieve.

5.1 Accuracy of measurement values

The modified and unmodified Baum-Welch algorithm have
been tested using a set of 405 glucose. The curves have
been recorded using several glucose sensors of the same
type at a sampling rate of 4 Hz. Different analyte concen-
trations and different types of sensor handling have been
used to compile representative samples of curve shapes.
In the case of the modified Baum-Welch, we additionally
compared a discrete (DHMM) against a semi-continuous
HMM (SCHMM) to test for its potential to improve the
measurement results. A semi-continuous codebook with
16 Gaussian density functions was used for the SCHMM
instead of the discrete codebook derived using the SOM.

The resulting mean relative errors of computed mea-
surement value

� �
using cross validation for evaluation

with respect to the hand labeled value are given in table 1.
Good accuracy is achieved for all variants and classes,
while the modification of the Baum-Welch algorithm yields
clear improvements. The more elaborate semi-continuous
HMM did not however improve accuracy for this test set
compared to a discrete HMM.

Class unmodDHMM modDHMM modSCHMM

1 2.7 [%] 1.4 [%] 1.5 [%]
2 1.2 [%] 1.1 [%] 0.9 [%]

total 2.6 [%] 1.4 [%] 1.4 [%]

Table 1. Mean relative error of the computed measure-
ment value

� �
in respect to the hand labeled value for

a set of 405 curves from glucose sensors: discrete HMM
using unmodified Baum-Welch (unmodDHMM), modified
Baum-Welch for a discrete HMM (modDHMM) and semi-
continuous HMM (modSCHMM)

5.2 Accuracy of concentrations

Another series of experiments has been conducted to test
the accuracy of concentrations computed. One single
HMM was trained to analyze both glucose and lactate as
analyte as a test for flexibility of the approach with re-
spect to variations of curve shapes due to varying ana-
lytes. We used one individual glucose sensor, and two
for lactate. As a training set, a total of 520 curves were

compiled (241 glucose, 279 lactate), using 8 different con-
centrations (0.05mM, 0.1mM, 0.15mM, 0.2mM, 0.4mM,
0.6mM, 0.8mM, 1.0mM). To derive a separate test set,
11 experiments were performed (three for glucose and 8 for
lactate as analyte), where in each experiments the same
8 concentrations were considered again. A sequence of
10 curves was sampled for each concentration and the scal-
ing factor � (see section 2) was calibrated using a solution
with standard concentration of 1.0mM for each set of 10
curves. The accuracy could thus be computed from a total
of 9P9 ���� 9 6 � ��� 6 curves available to test the single
trained HMM.

The modified Baum-Welch algorithm was used exclu-
sively as it has shown to outperform the standard variant.
The accuracies are given in table 2 supplemented with re-
sults using the older system based on fuzzy logic described
in [5]. These computationally derived results are also com-
pared to concentrations using the hand labeled measure-
ment values

� �
.

mod mod fuzzy hand
DHMM SCHMM labeled

glucose 11.5 [%] 10.9 [%] 13.4 [%] 11.1 [%]
lactate 14.2 [%] 13.4 [%] 18.8 [%] 15.1 [%]

Table 2. Mean relative error for the computed concentra-
tion from the 880 curves of the independent test set: mod-
ified Baum-Welch for a discrete HMM (modDHMM) and
semi-continuous HMM (modSCHMM), fuzzy logic system
(fuzzy), and concentrations computed from hand labeled
measurement value

���
(hand labeled)

The accuracy achieved is in the range of 10 to 15% for
both HMM variants and the manually labeled. The fuzzy
logic system is clearly inferior to the HMM based systems.
The increase of relative error compared to accuracies of
measurement values is due to the fact, that errors originat-
ing from the sensor itself are now also taken into account.
Such errors could derive from a slight deviation from pure
linear characteristics of the sensor for example. The semi-
continuous HMM outperforms the discrete approach for
this test set in contrast to the first set. The underlying cause
for this effect lies in a larger variability of curves within
this test set, due to a broader range of concentrations in-
vestigated and to the use two different analytes. The semi-
continuous HMM is better suited to adapt to this variabil-
ity since the lost of information due to vector quantization
of continuous features is reduced decidedly. It comes as a
surprise that the accuracy using hand labeled measurement
values is seemingly inferior to the one achieved with the
SCHMM. This is however probably caused by errors intro-
duced during hand labeling. Incorrectly labeled measure-
ment values

� �
inevitably result in wrong concentrations

derived. The trained HMM in contrast is able to generalize
the subset of badly labeled examples in the training set and
as a consequence outperforms manual evaluation.



Figure 5 shows the dependency of results with regard
to different concentrations for one of the 11 experiments
using glucose as analyte. As expected, the mean relative
error decreases with increase of concentration due to in-
creasing signal to noise ratio.
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Figure 5. Dependency of the accuracy with respect to
changing concentration. The figures given are for one of
the three glucose experiments used to compile the test set,
using the discrete HMM. The mean of the computed con-
centration for 10 curves is plotted against the ideal concen-
tration. The mean relative error is shown as bars.

6 Conclusions

A method to analyze curves from amperometric biosensors
using Hidden-Markov-Models has been presented. HMMs
are successfully employed to model these signal curves tak-
ing variability of curve shapes into account. The standard
approach of HMMs was modified in order to determine the
relevant measurement interval within the signal curve and
to reliably detect a time point to end measurement, which
is not given a prior in contrast to most other applications of
HMMs. A specific initialization of emission probabilities
for the Baum-Welch algorithm and a modification of this
training procedure itself have been proposed. The accu-
racies of detected measurement values and computed con-
centrations have been evaluated using almost 2000 signal
curves. The application of a semi-continuous HMM im-
proves results for a more demanding set of curves com-
pared to the discrete HMM, while both HMMs yield com-
parable results for less demanding curves. All HMM based
systems outperform a fuzzy based one due to its restricted
local processing of signal curves.

To conclude, this approach based on HMMs results
in a system ideally suited for a compact implementation
even including hand-held measurement devices. It adapts
automatically to various shapes of curves using a training
procedure utilizing a hand labeled training set and yields
accuracies comparable to if not better than manually deter-
mined values.
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